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Part One
Background



Explainability and its importance
● Explainability is crucial in sensitive domains

○ It helps users and service providers make informed and reliable decisions [1]

● DNNs suffer from the black-box problem [2]
○ Can not be used in finance nor healthcare domains (critical domains)

○ White-boxes are preferred for decision-making purposes [3]

● Black-boxes are more performant than white-boxes [4-7]
[1] Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM computing surveys  (CSUR) 51(5), 1–42 (2018)
[2] Petch, J., Di, S., Nelson, W.: Opening the black box: the promise and limitations of explainable machine learning in cardiology. Canadian Journal of Cardiology (2021)
[3] Verenich, I., Dumas, M., La Rosa, M., Nguyen, H.: Predicting process performance: A white-box approach based on process models. Journal of Software: Evolution and Process 31(6), e2170 
(2019)
[4] Aragona, D., Podo, L., Prenkaj, B., Velardi, P.: Coronna: a deep sequential framework to predict epidemic spread. In: Proceedings of the 36th Annual ACM Symposium on Applied Computing. 
pp. 10–17 (2021)
[5] Feng, W., Tang, J., Liu, T.X.: Understanding dropouts in moocs. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 33, pp. 517–524 (2019)
[6] Verma, H., Mandal, S., Gupta, A.: Temporal deep learning architecture for prediction of covid-19 cases in india. Expert Systems with Applications 195, 116611 (2022)
[7] Prenkaj, B., Distante, D., Faralli, S., Velardi, P.: Hidden space deep sequential risk prediction on student trajectories. Future Generation Computer Systems 125, 532–543 (2021)



What’s a graph?
A graph 𝐺 = 𝑉, 𝐸  consists of:
a nodes set 𝑉 = {𝑣!, … , 𝑣"} and an edges set 𝐸 = { 𝑣#, 𝑣$ 𝑣#, 𝑣$ ∈ 𝑉
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Challenges
There are three main challenges associated with processing graphs:

1. their topology is variable:
Thus it is hard to design a Neural Network that both sufficiently expressive 
and can cope with this variation;
 

2. graphs may be enormous:
a graph representing connections between users of a social network 
might have a millions nodes and billion of edges;
   

3. there may only be a single monolithic graph available:
so the usual protocol of training with many data examples and 
testing with new data is not always appropriate or possible.
   



Graph Representation (learning)
More formally, a graph consists of a set of 𝑵 nodes connected by a set of 𝑬 edges. 
The graph can be encoded by three matrices:
- adjacency matrix, 𝑨 is an 𝑁	×	𝑁	matrix where entry (𝑚, 𝑛)	is set to one if there is an edge between nodes 𝑚 

and 𝑛 and zero otherwise (symmetric for undirected graphs).
- nodes embeddings 𝑿 is an 𝐷×𝑁 matrix where 𝑛!" node has an associated node embedding 𝑿# of length 𝐷. 
- edges embeddings 𝑬 is an 𝐷$×𝑁 matrix where 𝑒!"  edge has an associated edge embedding 𝑬% of length 𝐷$.

We want to learn a (dense) representation 𝑯 of the Graph usable 
for different downstream tasks



Graph-level Tasks 
For example, we might want to predict:
• the temperature at which a molecule becomes liquid (a regression task);
• whether a molecule is poisonous to human beings or not (a classification task).
   

For graph-level tasks, the output node embeddings are combined (e.g., by averaging), and the resulting vector is mapped 
via a linear transformation or neural network to a fixed-size vector. 

• for regression, the mismatch is computed using the least squares loss.
• for binary classification, the output is passed through a sigmoid function, and the mismatch is calculated using the 

binary cross-entropy loss. 

𝑃𝑟 𝑦 = 1 | 𝑿, 𝑨 = 𝑠𝑖𝑔 β& +𝝎&𝑯&
𝟏
𝑁

  

where the scalar β&  and 1	×	𝐷	vector 𝝎&  are learned parameters.
𝑯&

𝟏
(

 has the effect of summing together all the embeddings and subsequently dividing by 𝑁.



GNN
A graph neural network is a model that takes the node embeddings 𝑿	and the 

adjacency matrix 𝑨 as inputs and passes them through a series of 𝑲 layers. 
The node embeddings are updated at each layer to create intermediate “hidden” 

representations 𝒉<=> before finally computing output embeddings 𝒉>. 

• At the beginning each column of the input node embeddings 𝑿 just 
contains information about the node itself. 

• At the end, each column of the model output 𝒉!  includes information 
about the node and its context within the graph. 

• Typical GNN mechanisms are:
• (random) walk based;
• Message passing;
• GCN;



Graph Classification e.g.
We want a neural network f 𝑿, 𝑨,Φ that classifies (predicts) molecules as toxic.

The adjacency matrix 𝐴	 ∈ 	ℝ!×! derives from the molecular structure. The columns of 
the node embedding matrix 𝑋	 ∈ ℝ##$×!are one-hot vectors indicating which of the 118 
elements of the periodic table are present.

Note that the input node embeddings can be transformed to an arbitrary size 𝐷 by the 
first weight matrix 𝛀% ∈ ℝ&×##$. 

𝑯? = 𝑎 𝜷@𝟏A +𝛀@𝑿 𝑨 + 𝑰
𝑯B = 𝑎 𝜷?𝟏A +𝛀?𝑯? 𝑨 + 𝑰
⋮ = ⋮

𝑯< = 𝑎 𝜷<C?𝟏A +𝛀<C?𝑯<C? 𝑨 + 𝑰

f 𝑿, 𝑨,Φ = 𝑠𝑖𝑔 β< +𝝎<𝑯<
𝟏
𝑁

As intuition: 𝑯<  depends by 𝑿 𝑨 + 𝑰 <, e.g 𝑯D: 𝑿 𝑨 + 𝑰 D =	𝑿(𝑨D + 3𝑨B + 3𝑨 + 𝑰D)



Batches and Receptive Field
One way to form a batch is to choose a random subset of labeled nodes at each training step. Each node depends on its 
neighbors in the previous layer and so on. Do you remember:

𝑯&  depends by 𝑿 𝑨 + 𝑰 &  
 

In a GCN the size of the receptive field is equivalent to the k-hop neighborhood.

We can hence perform a gradient descent step using the graph that forms the union of the k-hop neighborhoods of the 
batch nodes; the remaining inputs do not contribute.

graph expansion problem
If there are many layers and the graph is densely 
connected:every input node may be in the receptive field of 
every output.

In general we want that 𝑘	 << 	𝑑𝑖𝑎𝑚(𝐺)



Counterfactual example

● We have a social network of different users

● User U posts an illicit advertisement that violates the Terms of 
Services (e.g., selling illegal goods online)

● A counterfactual explanation of U’s account suspension would 
be:

“If  the user had not violated the TOS, their account would 

not have been banned.



Graph Counterfactual Explainability (GCE)
● Given:

○ A predictor (oracle) Φ:𝒢 → {0,1} 
that we want to explain

○ A graph𝐺	g  or a set of graphs 

𝒢 = {𝐺0, … , 𝐺1}	

○ A similarity function 𝒮: 𝒢×𝒢 → ℝ

● We want to find a counterfactual 𝐺%

such that ℰ& 𝐺 = 𝑎𝑟𝑔 𝑚𝑎𝑥
'!∈𝒢!,'+'!,& ' +& '!

𝒮 𝐺, 𝐺%

C
C

C
C

C

C

C

C
C

C

C C

H HH H

H

H

H

H

HN
O O

C

C
C

C

C

C

C
C

C

C C

H HH H

H

H

H

H

HN
O O



Typical XAI Workflow
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Part Two
SoTA

Based on

Mario Alfonso Prado-Romero, Bardh Prenkaj, Giovanni Stilo, and Fosca Giannotti. 2023. 
A Survey on Graph Counterfactual Explanations: Definitions, Methods, Evaluation, and Research Challenges. 

ACM Compututer Survey (September 2023). https://doi.org/10.1145/3618105



GCE methods Taxonomy

[8] Mario Alfonso Prado-Romero, Bardh Prenkaj, Giovanni Stilo, and Fosca Giannotti. 2023. A Survey on Graph Counterfactual Explanations: 
Definitions, Methods, Evaluation, and Research Challenges. ACM Comput. Surv. (September 2023). https://doi.org/10.1145/3618105



GCE Search-Based

● Find a counterfactual within the data

● For a graph 𝐺 ∈ 𝒢 find a 𝐺% ∈ 𝒢 s.t. Φ 𝐺 ≠ Φ 𝐺%

● These methods fail to produce a counterfactual if the 
explainer cannot access the original dataset



GCE Heuristic-Based

● Perturb the original graph such that 
Φ 𝐺 ≠ Φ 𝐺%  without accessing the 
original dataset

● Requires to define the perturbation 
rules after a careful examination of 
the data



GCE Learning-Based

● Learning-based learn the heuristic 
based on the data.

● Explainers are trained on some 
samples and can be used to 
produce counterfactuals at 
inference



Comparison between GCE Methods



RETEL
Framework



GRETEL modules interaction
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Empirical Explainers comparison



GRETEL v1

Demo
https://github.com/MarioTheOne/GRETEL



Part Three
G-CounterGAN



GCE Generative

● Generative strategies allow to produce multiple counterfactuals from a 
learned latent space

● don’t need to access the oracle at explanation time

We are here!
Generative approaches:
• Learn the perturbation of the input autonomously 

(vs heuristic approaches)

• Aren’t confined to the original data (vs search approaches)

• Don’t rely on learned masks to apply to the input to produce counterfactuals 
(vs learning approaches)



Architecture overview



High Level Loss

ℒ!"# = ℒ$ 𝐺, 𝐷 + ℒ% 𝐺, 𝑐 + 𝑅𝑒𝑔 𝐺, 𝐴

● c is the class to explain, and 𝑅𝑒𝑔 𝐺, 𝐴  is a regularization term that 
controls the sparsity of the residuals (i.e., feature perturbations)



Generator/Discriminator Loss

ℒ123 = ℒ4 𝐺, 𝐷 + ℒ5 𝐺, 𝑐 + 𝑅𝑒𝑔 𝐺, 𝐴

ℒ4 𝐺, 𝐴 = 𝐸6∼8!"#" log 𝐷 𝐴
+	𝐸6∼8!"#" log 1 − 𝐷 𝐴 + 𝐺 𝐴

● We modify the generator to take original input data instead of 
noise sampled from a normal distribution to directly generates 
Counterfactuals of the input instance



Embedding the Oracle (1)

ℒ123 = ℒ4 𝐺, 𝐷 + ℒ5 𝐺, 𝑐 + 𝑅𝑒𝑔 𝐺, 𝐴

● Sampling instances from the data distribution could make G generate null 
residuals

● Hence, this loss component leverage the Oracle to steer the generator 
away from this behavior, making it produce plausible counterfactuals

ℒ& 𝐺, 𝑐 = 𝐸,∼.!"#" log 𝕀 Φ 𝐴 + 𝐺 𝐴 ≠ 𝑐



ℒ123 = ℒ4 𝐺, 𝐷 + ℒ5 𝐺, 𝑐 + 𝑅𝑒𝑔 𝐺, 𝐴

● Problem: 
The oracle is a black-box and we cannot access its gradients to 
optimize this loss!

ℒ& 𝐺, 𝑐 = 𝐸,∼.!"#" log 𝕀 Φ 𝐴 + 𝐺 𝐴 ≠ 𝑐

Embedding the Oracle (2)



● Solution:

● We weight the first term of the loss by the prediction scores of the oracle;

● 𝕀 Φ 𝐴 = 𝑐 	 is an indicator function that returns 1 if Φ classify the instance in 
the class 𝑐; while 𝒜 is  the set of all adjacency matrices corresponding to 𝐺 ∈ 𝒢 

ℒ/01 =
∑,∈𝒜 1 Φ 𝐴 = 𝑐 ⋅ log𝐷 𝐴

∑,∈𝒜 𝕀 Φ 𝐴 = 𝑐

+
1
𝒜

A
,∈𝒜

log 1 − 𝐷 𝐴 + 𝐺 𝐴 + 𝑅𝑒𝑔 𝐺, 𝐴

Final Loss



G-CounteRGAN Inference
● Counterfactuals generation are made by sampling edges by the 

edge probabilities learned in the latent space;

● We keep the node order to avoid CLEAR’s graph matching problem 
(NP-hard)

[9] Ma, J., Guo, R., Mishra, S., Zhang, A., Li, J.: CLEAR: generative counterfactual explanations on graphs. In: NeurIPS (2022)



Performances on TreeCycles@n

† symbolizes learning-based approaches; ‡ indicates generative approaches; ∗ depicts search (heuristic) methods. 
Bold values are the best overall; underlined are second-best on average per dataset



Anecdotal Counterfactual Visualization

Counterfactual produced by G-CounteRGAN, CLEAR, and the optimistic baseline DCE on Tree-Cycles@28. As in the original 
graph, green edges are additions, red ones are removals, and black ones are maintained. An × denotes an invalid counterfactual, 

and a ✓ is valid.



Anecdotal Counterfactual Visualization

Counterfactual produced by CF2, CLEAR, and G-CounteRGAN on Tree-Cycles@28. 



Part Five
Conclusive Remarks



Conclusion
Q: “Can generative approaches compete with 
search/heuristic baselines in producing valid 
counterfactuals in synthetic datasets?”  A: Not yet. But …

● They are crucial to produce multiple counterfactuals by sampling 
their learned latent spaces

● They can learn the input perturbation strategy differently from 
heuristic-based approaches

● They have the potential to become akin to a Swiss-knife in GCE



Thanks for your attention!

Slides & More
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