

A SYNTHETIC
BENCHMARK
TO EXPLORE
LIMITATIONS OF
LOCALIZED DRIFT
DETECTIONS

FLAVIO GIOBERGIA, ELIANA PASTOR, LUCA DE ALFARO, ELENA BARALIS

> DELTA Workshop @ KDD 2024 Barcelona, Spain August 26, 2024

A CLASSIC SCENARIO

MODEL PERFORMANCE

- When a drift occurs, the performance of a model will be affected over time
- If a drift occurs, we'd like to notice & take action
- If no drift is detected, everything is fine...
 - right?

LOCAL DRIFTS MAY GO UNNOTICED!

 A small enough subgroup of points may drift and not have a significant effect on the overall performance!

• If the drift goes undetected, the subgroup will be affected disproportionally and nobody will even know

CREATING A LOCALIZED DRIFT BENCHMARK

• We set out to create a controlled benchmark, with localized drifts injected into it.

• Based on this dataset, we'd like to *quantify* the extent to which existing *drift detectors* can find localized drifts.

AGRAWAL DATASET

- We base the benchmark on the Agrawal stream generator [1], a commonly adopted synthetic stream
- Each generated sample is a point (person) characterized by various features:
 - E.g. Age, Salary, Education level
- Concept Drift is injected by using different classification functions to generate target labels

[1] Rakesh Agrawal, Tomasz Imielinksi, and Arun Swami. "Database Mining: A Performance Perspective", IEEE Transactions on Knowledge and Data Engineering, 5(6), December 1993.

DRIFTING SUBGROUP(S)

- We want to target one specific subpopulation
 - E.g., "purple circles"
 - This simulates a subgroup that starts acting differently

- Desiderata for Subgroup Agrawal Drift (SAD):
 - Injected subgroups of different sizes
 - Subgroups defined in a procedural manner

GREEDY SUBGROUP DEFINITION

l target support: 10%

GREEDY SUBGROUP DEFINITION

subgroup: $\{age \in [50, 60]\}$

GREEDY SUBGROUP DEFINITION

Ø target support: 10%

✓ |0.125 - 0.1| **<** |0.167 - 0.1|

HOW DO DETECTORS PERFORM?

- We injected drift in subgroups of different sizes:
 - from 1% -- very small subpopulations,
 - to 100% (i.e., the entire population is affected by drift).

 We evaluate the results in terms of FNR, FPR, F1 score, accuracy for various drift detectors

FALSE POSITIVE RATE

For all considered methods, the False
 Positive Rate is fairly constant, regardless
 of subgroup size, and low

• In other words, the methods rarely fire "positive" predictions when no drift is occurring

FALSE NEGATIVE RATE

• By contrast (and, as expected), the FNR is heavily *affected by the subgroup size*.

- When a smaller subgroup drifts, all methods struggle to detect drift
 - Even though, remember, the entire subgroup is drifting!
- For subgroups larger than ~10% of the population, all methods get better

WE'RE WORKING ON IT!

- We have addressed this problem in a recent work
 - With very promising preliminary results:)

• Pre-print available at https://bit.ly/DriftInspector

CONCLUSIONS

We argue that drift detectors should be able to detect localized drifts

• We introduce Subgroup Agrawal Drift, a synthetic benchmark with local drift injections

• We show that various drift detectors struggle to detect drifts

- We hope for this to spark some interest in future efforts:)
 - (We are already onto that!)

THANK YOU:)

flavio.giobergia@polito.it

X @fgiobergia

https://bit.ly/DriftInspector

AGRAWAL DATASET

- We base the benchmark on the Agrawal stream generator [1]
- Each generated sample is a point (person) characterized by various features:
 - Salary
 - Commission
 - Age
 - Education level
 - Car maker
 - Zip code of the town
 - Value of the house
 - Years house owned
 - Total loan amount

[1] Rakesh Agrawal, Tomasz Imielinksi, and Arun Swami. "Database Mining: A Performance Perspective", IEEE Transactions on Knowledge and Data Engineering, 5(6), December 1993.

DRIFTING AGRAWAL

- Each point is assigned a binary label (whether a loan should be approved)
- 10 classification functions $f_i: X \rightarrow \{0,1\}$ exist to assign each point to its ground truth
 - e.g., $f_8(x) = (0.67 \text{ x (salary + commission)} 5000 \text{ x elevel} 20\text{K}) > 0$
- Various works introduce concept drift by gradually shifting from f_i to f_i ($i \neq j$)
 - E.g., p(f = fi) = 1/(1 + exp(-4(t-p)/w)
 - Uses a sigmoid to parametrize when the drift occurs (p) and how long the transitory is (w)

EXAMPLES OF SUBGROUPS

• So, we can generate subgroup of (approximately) any target size, and have that subgroup drift!

Time to test some techniques!

Generated subgroup	Target size	Computed size	Actual size
$ \{ \begin{array}{l} elevel \in [0,3) \ \land \\ zipcode \in [6,7) \ \land \\ age \in [29,78) \ \} \end{array} $	0.05	0.0536	0.0552
$ \left\{ \begin{array}{l} car \in [15,19) \ \land \\ salary \in [39000,116000) \ \land \\ zipcode \in [0,8) \ \right\} \end{array}$	0.1	0.1045	0.107
	0.25	0.2505	0.2527
$ \begin{cases} elevel \in [1,4) \land \\ age \in [20,78) \land \\ salary \in [21000,140000) \land \\ hyears \in [1,30) \end{cases} $	0.5	0.501	0.4965

Some examples of generated subgroups. Note that SG sizes may (slightly) differ from the requested one

F1, ACCURACY

