


A CLASSIC SCENARIO
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MODEL PERFORMANCE

* When a drift occurs, the performance of a model will be affected over time
e |f a drift occurs, we'd like to notice & take action

* If no drift is detected, everything is fine...
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LOCAL DRIFTS MAY GO

UNNOTICED!

* Asmall enough subgroup of

points may drift and not have a 1.0
significant effect on the overall 0.8 -
performance!
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* If the drift goes undetected, the

subgroup will be affected 0.0
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CREATING A LOCALIZED DRIFT
BENCHMARK

« We set out to create a controlled benchmark, with localized drifts injected into it.

« Based on this dataset, we'd like to quantify the extent to which existing drift detectors
can find localized drifts.



AGRAWAL DATASET

« We base the benchmark on the Agrawal stream generator[1], a commonly adopted
synthetic stream

« Each generated sample is a point (person) characterized by various features:

» E.g. Age, Salary, Education level

« Concept Drift is injected by using different classification functions to generate target
labels

[1] Rakesh Agrawal, Tomasz Imielinksi, and Arun Swami. “Database Mining: A Performance Perspective”, IEEE Transactions on Knowledge and Data Engineering, 5(6), De cember 1993.



DRIFTING SUBGROUP(S)

« We want to target one specific subpopulation
« E.g., “purple circles”

 This simulates a subgroup that starts acting differently

« Desiderata for Subgroup Agrawal Drift (SAD):
* Injected subgroups of different sizes

« Subgroups defined in a procedural manner



GREEDY SUBGROUP DEFINITION

—————————————————————————
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GREEDY SUBGROUP DEFINITION

—————————————————————————
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GREEDY SUBGROUP DEFINITION

—————————————————————————
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HOW DO DETECTORS PERFORM?

« We injected drift in subgroups of different sizes:
* from 1% -- very small subpopulations,

* to 100% (i.e., the entire population is affected by drift).

« We evaluate the results in terms of FNR, FPR, F1 score, accuracy for various drift
detectors



FALSE POSITIVE RATE

* For all considered methods, the False

Positive Rate is fairly constant, regardless 1.0 .. DDM

of subgroup size, and low v 0.8 -#- EDDM
I —4— FHDDM
2 06- —+— HDDM_W

* In other words, the methods rarely fire @ 0s
sy 7] . . . . o uU.
“positive” predictions when no drift is w
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Drifting subgroup size




FALSE NEGATIVE RATE

* By contrast (and, as expected), the FNR

is heavily affected by the subgroup size. 101 g=-egun

. DDM
- R'A

®o0a w  -®= EDDM
g -\ —¢ FHDDM
« When a smaller subgroup drifts, all % 0.6 —+— HDDM_W
methods struggle to detect drift >
. 20.4-
* Even though, remember, the entire o
subgroup is drifting! 2 0.2

« For subgroups larger than ~10% of the 0.0

T T T

population, all methods get better
Drifting subgroup size



WE'RE WORKING ON IT!

* We have addressed this problem in a recent work

F1 Score

« With very promising preliminary results :)

-, 3
0.0 1 -V li-i-i-A

. . . . 1072 107!
 Pre-print available at https://bit.ly/DriftInspector Support
--®- DDM(W=4000)  --A- x’(p=0.01)
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@ FET (p=0.01) —4§— Driftinspector(t; = 5)



https://bit.ly/DriftInspector

CONCLUSIONS

« We argue that drift detectors should be able to detect localized drifts
* We introduce Subgroup Agrawal Drift, a synthetic benchmark with local drift injections
* We show that various drift detectors struggle to detect drifts

« We hope for this to spark some interest in future efforts :)

* (We are already onto that!)



THANK YOU :)

https://bit.ly/SAD-repo

https://bit.ly/SAD-drift
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& Flavio Giobergia

[1] flavio.giobergia@polito.it

X @fgiobergia

https://bit.ly/Driftinspector
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AGRAWAL DATASET

* We base the benchmark on the Agrawal stream generator [1]

« Each generated sample is a point (person) characterized by various features:
 Salary
« Commission
* Age
« Education level
« Car maker
« Zip code of the town
 Value of the house
* Years house owned
 Total loan amount

[1] Rakesh Agrawal, Tomasz Imielinksi, and Arun Swami. “Database Mining: A Performance Perspective”, IEEE Transactions on Knowledge and Data Engineering, 5(6), De cember 1993.



DRIFTING AGRAWAL

» Each pointis assigned a binary label (whether a loan should be approved)

* 10 classification functions f; : X 2 {0, 1} exist to assign each point to its ground truth
* e.g., fg(x) =(0.67 x (salary + commission) - 5000 x elevel - 20K) > 0

» Various works introduce concept drift by gradually shifting from f; to f; (i # j)
« E.g., p(f=1i)=1/(1+ exp(-4(t-p)/w)
« Uses a sigmoid to parametrize when the drift occurs (p) and how long the
transitory is (w)



EXAMPLES OF SUBGROUPS

Generated subgroup Target size Computed size Actual size

 So, we can generate subgroup of { elevel € [0,3) A
_ , zipcode € [6,7) A 0.05 0.0536 0.0552
(approximately) any target size, and age € [29,78) )
oy { car € [15,19) A
have that subgroup drift! salary € [39000,116000) A 0.1 0.1045 0.107

zipcode € [0, 8) }

{ zipeode € [2,5) A
salary € [30000, 139000) A

0.25 0.2505 0.2527
. . age € [22,80) A
* Time to test some techniques! car € [1,20) }
{ elevel € [1,4) A
age € [20,78) A 0.5 0.501 0.4965

salary € [21000, 140000) A
hyears € [1,30) }

Some examples of generated subgroups. Note that
SG sizes may (slightly) differ from the requested one



F1, ACCURACY
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