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1) Challenges of Learning from Data Streams

SML CL TSA

1) Managing changes in data distribution

(concept drifts).
X X

2) Learning continuously from single data points or 

mini-batches.
X

3) Remembering all the acquired knowledge

(avoid catastrophic forgetting). 
X

4) Handling temporal dependence. X

• SML: Streaming Machine 

Learning

• CL: Continual Learning

• TSA: Time Series 

Analytics

Ziffer, G. et al. Towards Time-
Evolving Analytics: Online Learning for Time-
dependent Evolving Data Streams. Data
Science (Preprint), 1–16
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2) Research Goal
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How do streaming models behave in the case of elaborated temporal dependence?

Comparison between:

• SML models

• SML models with temporal augmentation

𝑋𝑡
𝑇𝐴 =  𝑋𝑡 ∪ {𝑦𝑡−1, … , 𝑦𝑡−𝑘}

• Our previous solution cPNN
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3a) cPNN: Taming Temporal Dependence when Learning Continuously

• Accumulate data points in mini-

batches.

• Apply windowing on the mini-batch 

to build the sequences.

• Input the sequences to LSTM (cLSTM).

Giannini, F., Ziffer, G., & Della Valle, E. (2023). cPNN: 
Continuous Progressive Neural Networks for Evolving 
Streaming Time Series. In Pacific-Asia Conference on 
Knowledge Discovery and Data Mining (pp. 328-340).

Lemos Neto, Á. C., Coelho, R. A., & Castro, C. L. D. 
(2022). An Incremental Learning Approach Using 
Long Short-term Memory Neural Networks. Journal of 
Control, Automation and Electrical Systems, 33(5), 
1457-1465.
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3b) cPNN: Addressing Concept Drifts and Forgetting

▪ Transfer learning to adapt to new 

concepts quickly.

▪ Freezing the weights to avoid 

catastrophic forgetting.

https://github.com/federicogiannini13/cPN

N_extended
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Cossu, A. et al. Continual Learning with Gated 
Incremental Memories for Sequential Data 
Processing. In: IJCNN. pp. 1–8. IEEE (2020)

Rusu, A.A et al. Progressive Neural Networks. CoRR
abs/1606.04671 (2016)

https://github.com/federicogiannini13/cPNN_extended
https://github.com/federicogiannini13/cPNN_extended
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4a) Experiments: Setting
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• Both synthetic and real data streams.

• Three abrupt concept drifts.

• Some drifts are severe (they change more than 50% labels).

• The remaining drifts are called mild.

• Some boundary functions are reproposed.



Ablated versions:

• cLSTM: no drift management

• mcLSTM: no transfer learning

cPNN adapts quicker.

When the drift is severe cLSTM struggles.

mcLSTM is quite always the worst.
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4b) Experiments: Ablation Study 
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Synthetic

data stream

Weather

data 

stream

Severe drift Known func. Known func.



ARF model cannot learn.

Temporal augmentation has a bias on the 

previous label.

cPNN can learn properly all the 

functions.
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4c) Experiments: Comparison with SML Models

F. Giannini et al.: Addressing Temporal Dependence, Concept Drifts, and 
Forgetting in Data Streams

Synthetic

data stream

Weather

data 

stream

Severe drift Known func. Known func.



9

5) Conclusions and Future Works
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Conclusions

• cPNN pioneers a solution to deal jointly with all the challenges of data streams.

• cPNN adapts quickly to concept drifts thanks to transfer learning.

• SML models cannot learn with temporal dependence.

• Temporal augmentation is biased on the previous label.

Future works

• Quantisation to reduce the memory footprint.

• Study of forgetting.

• Federated Learning.
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Thank you!

Any questions?

Federico Giannini federico.giannini@polimi.itfedericogiannini13

F. Giannini et al.: Addressing Temporal Dependence, Concept Drifts, and 
Forgetting in Data Streams

https://github.com/federicogiannini13/cPNN_extended

https://github.com/federicogiannini13/cPNN_extended
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Outline

1. Challenges of learning in dynamic environments

2. Research goal

3. cPNN: Continuous Progressive Neural Networks

4. Experiments

5. Conclusions and Future Works
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Problems of SGD for Evolving Data Streams
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Experimental Setting

Severe

drift

Severe

drift

Severe

drift

Severe

drift

Mild

drift

Mild

drift
• Both synthetic and real weather data streams.

• Two boundary functions alternated (four classification functions).

• Three abrupt concept drifts.

• Some drifts are severe (more than 50% label changes), and 

others are mild.

• Two studies:

• cPNN ablation study

• Comparison between cPNN, SML models (ARF and HAT) 

and SML models with temporal augmentation.

F. Giannini et al.: Addressing Temporal Dependence, Concept Drifts, and 
Forgetting in Data Streams
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Evaluation
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• Cohen’s Kappa Score computed 

continuously in a prequential 

evaluation way.

• Score reset after concept drifts.

• Ablation study accumulates data 

points in mini-batches also for 

inference.
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