

Discovering Drift Phenomena in Evolving Landscape (DELTA 2024)

CeDFormer: Community Enhanced Transformer for Dynamic Network Embedding

Jiaqi Guo, Tianpeng Li, Minglai Shao, Wenjun Wang, Lin Pan, Xue Chen, Yueheng Sun

August 26, 2024

Background

Dynamic Graph Data May Lack Strict Chain-Like Dependency

 complex, non-smooth, nonuniform, and highly frequent changes over multiple snapshots

Time Snapshot Dependency Analysis

Transformer-Based Models on Sequential Data

Model Overview

Community Enhanced Encoder

Global Stable Community Discovery:

- ▶ aggregate the dynamic graph $G = \{G_{(1)}, G_{(2)}, ..., G_{(T)}\}$ into a joint temporal graph G_{union}
- \succ find the central points of community on G_{union} through Personalized PageRank (PPR)

$$p(ij) = \frac{\mathcal{W}'_{ij}}{\sum_{k \in \mathcal{N}(i)} \mathcal{W}'_{ik}}$$

discover all members of various communities through conductance

$$\phi(C) = \frac{\sum_{i \in C, k \in \overline{C}, (i,k) \in \mathcal{E}'} \mathcal{W}'_{ik}}{\sum_{i,j \in C, (i,j) \in \mathcal{E}'} \mathcal{W}'_{ij} + \sum_{i \in C, k \in \overline{C}, (i,k) \in \mathcal{E}'} \mathcal{W}'_{ik}}$$

Community Enhanced Encoder

Embedding Strategy

Two Level Multi-head Attention

If there are *c* communities in total, with an average of *m* members per community and a total of *v* nodes, the overall optimization rate for the entire encoder part can be calculated as $\frac{c*(m-1)}{v}$

BOS in dynamic graph

unlike the boss in NLP, the initial graph embedding is not fixed but can be learned, similar to the concept in **meta learning**, where each training dataset will receive a unique initial graph embedding

Time Snapshot Dependency Analysis

Node Quantity Robustness Experiment

AUC and AP scores of link prediction on the BitcoinOTC Dataset.

Model	bitcoi	inotc	bitcoi	notc-4k	bitcoi	notc-3k	bitcoi	notc-2k	bitcoi	notc-1k
	AUC	AP	AUC	\mathbf{AP}	AUC	\mathbf{AP}	AUC	\mathbf{AP}	AUC	\mathbf{AP}
VGRNN	81.34	88.62	82.02	89.31	81.19	89.05	76.95	85.99	63.07	71.40
DySAT	83.06	81.18	86.32	85.20	84.19	81.29	87.37	85.90	68.54	74.31
CeDFormer	89.23	88.63	93.48	94.05	93.22	95.03	88.42	85.21	73.01	75.20

The training time per epoch as a function of the number of nodes

Link Prediction

The average training time for one epoch on different datasets, in seconds/epoch.

Model	Enron	DBLP	highSchool	FaceBook	Email
DySAT	2.240	2.268	2.740	4.622	8.620
Dyformer	1.123	2.474	4.728	6.822	17.774
HGWaveNet	67.740	95.316	127.335	262.109	683.212
CeDFormer	2.267	3.319	2.945	5.972	25.719

AUC and AP scores of link prediction

Metrics	Model	Enron	DBLP	highSchool	FaceBook	Email	bitcoinOTC
AUC	VGRNN	93.42 ± 0.70	$85.80{\pm}0.78$	$89.66 {\pm} 0.32$	89.79 ± 0.34	$91.92{\pm}1.18$	$81.34 {\pm} 3.25$
	DySAT	88.81 ± 1.10	$86.74 {\pm} 1.51$	$91.51 {\pm} 0.48$	88.88 ± 0.89	$90.42 {\pm} 0.91$	$83.06 {\pm} 2.71$
	Dyformer	90.35 ± 0.45	$77.74 {\pm} 0.63$	$85.01 {\pm} 0.29$	$83.74 {\pm} 0.76$	$91.08 {\pm} 0.44$	$83.62 {\pm} 1.01$
	DGCN	85.27 ± 0.85	$72.03 {\pm} 0.54$	$66.18 {\pm} 0.53$	$68.65 {\pm} 0.29$	95.12 ± 0.30	$84.35 {\pm} 4.88$
	HGWaveNet	94.45 ± 0.26	$88.95 {\pm} 0.47$	$91.64 {\pm} 0.22$	$86.98 {\pm} 0.66$	92.49 ± 0.36	80.06 ± 1.27
	CeDformer	$94.67 {\pm} 0.51$	87.64 ± 0.92	$94.33{\pm}0.80$	$90.05{\pm}0.50$	$95.83 {\pm} 1.01$	$89.23 {\pm} 1.97$
AP	VGRNN	$94.50 {\pm} 0.66$	$88.64{\pm}0.58$	$88.71 {\pm} 0.65$	89.14 ± 0.41	$93.34{\pm}0.70$	88.62 ± 2.37
	DySAT	87.30 ± 1.54	$89.64{\pm}1.00$	89.17 ± 1.12	88.61 ± 0.96	$89.19 {\pm} 1.17$	81.18 ± 2.59
	Dyformer	90.78 ± 0.44	$78.94{\pm}0.51$	$84.25 {\pm} 0.34$	$81.16 {\pm} 0.72$	$92.39 {\pm} 0.49$	$84.54 {\pm} 1.74$
	DGCN	84.51 ± 0.79	$73.14{\pm}0.69$	$66.09 {\pm} 0.56$	$68.78 {\pm} 0.34$	95.32 ± 0.31	$81.42 {\pm} 3.74$
	HGWaveNet	94.37 ± 0.32	$91.72{\pm}0.38$	90.86 ± 0.25	$85.96 {\pm} 0.71$	$94.02 {\pm} 0.32$	81.15 ± 1.24
	CeDformer	93.87 ± 0.39	90.52 ± 0.48	$94.10 {\pm} 0.83$	$89.84 {\pm} 0.56$	$96.65{\pm}0.42$	$88.63 {\pm} 2.70$

AUC and AP scores of new link prediction

Metrics	Model	Enron	DBLP	highSchool	FaceBook	Email	bitcoinOTC
AUC	VGRNN	87.41 ± 0.96	$75.87{\pm}1.65$	$88.09 {\pm} 0.28$	86.76 ± 0.54	$90.37 {\pm} 1.28$	80.22 ± 2.78
	DySAT	82.58 ± 3.00	$76.57 {\pm} 2.30$	$90.42 {\pm} 0.78$	85.97 ± 1.21	$81.71 {\pm} 3.97$	$83.09 {\pm} 2.61$
	Dyformer	87.35 ± 0.52	$74.76 {\pm} 0.66$	84.23 ± 0.33	$81.58 {\pm} 0.69$	$90.62 {\pm} 0.68$	$81.31 {\pm} 1.69$
	DGCN	81.87 ± 0.70	$62.48{\pm}1.54$	$62.08 {\pm} 0.28$	$64.98 {\pm} 0.43$	$93.21 {\pm} 0.40$	83.50 ± 1.83
	HGWaveNet	$89.38 {\pm} 0.36$	$83.73 {\pm} 0.55$	$89.63 {\pm} 0.24$	$83.97 {\pm} 0.61$	92.05 ± 0.38	$79.97 {\pm} 0.99$
	CeDformer	$90.46 {\pm} 0.59$	80.41 ± 0.88	$91.35 {\pm} 0.78$	$88.37{\pm}0.46$	$94.36 {\pm} 0.49$	$88.72 {\pm} 1.55$
AP	VGRNN	88.76 ± 0.70	$78.38{\pm}1.21$	$86.81 {\pm} 0.54$	$85.30 {\pm} 0.66$	$92.22 {\pm} 0.77$	84.85 ± 3.45
	DySAT	83.07 ± 2.89	$78.81 {\pm} 2.13$	88.76 ± 1.56	$84.78 {\pm} 1.79$	$74.96 {\pm} 3.13$	82.24 ± 2.94
	Dyformer	$88.00 {\pm} 0.46$	$73.96{\pm}0.73$	$84.25 {\pm} 0.31$	$80.66 {\pm} 0.55$	$91.24 {\pm} 0.76$	$80.02 {\pm} 2.06$
	DGCN	$82.03 {\pm} 0.57$	64.72 ± 1.52	$62.15 {\pm} 0.37$	$65.65 {\pm} 0.53$	$93.36 {\pm} 0.43$	$81.38 {\pm} 1.15$
	HGWaveNet	87.71 ± 0.33	$86.89{\pm}0.47$	$88.48 {\pm} 0.27$	$82.30 {\pm} 0.67$	$93.29 {\pm} 0.38$	$79.86{\pm}1.25$
	CeDformer	$89.74 {\pm} 0.71$	$83.39 {\pm} 0.64$	$90.09{\pm}0.72$	$87.91 {\pm} 0.45$	$95.75 {\pm} 0.53$	$87.11 {\pm} 2.01$

Thanks for your listening