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Real Time Failure Detection: The Context



● High-speed Sensor Streaming Data

● The interesting cases are the rare events: 

○ Changes in the working regimes

○ Anomalies and Failures

● Explaining the rare events, mainly failures!
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Context
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The Air Compressor Unity
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The Air Compressor Unity Sensors



6

Analogue Sensors
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Digital Sensors
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Failure Detection

M. Silva, B. Veloso, J. Gama: Predictive Maintenance, Adversarial Autoencoders and Explainability;

ECMLPKDD 2023  
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Autoencoders
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Normal Data



● AE is trained with data from the normal behaviour of trains

● Different trains have different “normal” behaviours

● There are different normal working regimes for the same train
○ We use change detection algorithms to identify changes in the working regime

○ Each working regime has an AutoEncoer associated
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Autoencoders

Chiara Balestra, Bin Li, and Emmanuel Muller. 
Slidshaps–sliding shapley values for correlation-based change detection in time series. 
In 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA) . IEEE, 2023. 
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Approach 1: LSTM Autoencoder
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Receptive field size = dilation x (kernel - 1) + 1

Exponential dilation: dilation = 

Approach 2: Temporal Convolutional Networks



Approach 3; Wasserstein Autoencoders with Generative Adversarial Networks (WAE-
GAN)
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Regularization of latent space using an 

adversarial training scheme.

Discriminator network   :  : trained to 

distinguish samples from      from 
distribution   

Minimax training scheme:       is also trained 
to deceive
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WAE-GAN with LSTM and TCN



16

● Reconstruction error:

○ Using critic scores: compute Z-score as normalization - large absolute values of Z-score indicate high 
anomaly scores. Final output: multiply reconstruction error by z-scored critic score.

● Calculate anomaly threshold from distribution of outputs from the training set. Set the threshold to: 

Q3 +3*IQR

○ Values above anomaly threshold given value of 1: anomaly was detected.

● Run a low pass filter on the resulting sequence of 1s and 0s:

○ Output failure when the output of the low pass filter is consecutively above a decision threshold. 

Detecting failures
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Explaining the Failure



18

The Neuro-Symbolic Explainer for Rare Cases



The two main components:

● An online regression rules learning system, based on AMRules. Learns a 

predictive model y = f(X), where y is the reconstruction error, and X are 

the input features of the LSTM-AE.

● A sample strategy based on Chebyshev inequality: focusing on the 

examples with high reconstruction error, meaning high probability of being 

a failure.
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The Anomaly Explanation Layer



● A rule is an implication of the form 

Antecedent ⇒ Consequent

● The Antecedent is a conjunction of conditions 

based on attribute values.

● If all the conditions are true, a prediction is made 

based on Consequent (L).

● The Consequent contains the sufficient statistics to:
○ expand a rule,

○ make predictions,

○ detect changes,

J. Duarte, J. Gama, A. Bifet: Adaptive Model Rules From High-Speed Data Streams. ACM 

Trans. Knowl. Discov. Data; 2016
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Regression Rules
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Regression Rules: the AMRules Algorithm



22

Rule Sets



Let Y be a random variable with finite expected value and finite non-zero variance. 

Then for any real number t > 0

● No more than 1/t 2 of the distribution's values can be t or more standard deviations away 

from the mean

● The probability of observing values far from the mean is low

● The probability of observing rare cases - the failures - is low2
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Chebyshev Inequality

https://en.wikipedia.org/wiki/Standard_deviations


For each example:

● We compute 
○ t is small for values of y near the mean

○ t is large for values of y far from the mean

● The example is passed to the learning algorithm K times 

● K has large values for the rare cases
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Chebyshev over-sampling
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Chebyshev over-sampling
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Experimental Evaluation
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The Reported Failures
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Experimental Setup

● Methods:

○ LSTM Sparse Autoencoder

○ TCN Autoencoder

○ WAE-GAN

● Input Sequence of t time-stamps

○ Compressor cycles

○ Window of 30 m
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After hyperparameter tuning:

● LSTM Autoencoder: 5 LSTM layers, 4 neurons per layer.

● TCN Autoencoder: 8 TCN layers, 7-dimensional kernel, 6 hidden units per layer, 4-dimensional 
latent space (RFS = ~1500).

● WAE-GAN (4-dimensional latent-space): 
○ Encoder and decoder: 10 TCN layers, 3-dimensional kernel, 30 hidden units per layer (RFS 

= ~2000).
○ Discriminator: 3 LSTM layers with 32 neurons per layer.

Based on 30-minute data chunks
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The red horizontal dotted line is 

the alarm threshold 

The grey bars represent real 

failures reported by 

maintenance teams.
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● The WAE-GAN model is able to identify the two failures at least two 

hours before the LPS signal is active. 

○ without generating any false alarm (achieving a perfect F1 score). 

● The TCN autoencoder is also able to detect both failures early 

○ but generates two false alarms (F1 of 0.67). 

● The LSTM autoencoder is able to detect both failures 

○ without generating a false alarm, 

○ but is unable to detect the first failure before the LPS signal. 

Discussion
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● First failure - air leak:
○ H1 <= 8.8 bar and Oil temperature > 58.5ºC

■ active 68% of the air leak

○ Oil temperature > 60.8ºC and TP2 > 9.2 bar and Reservoirs > 9.8 bar 
■ active 0.8% of the air leak

○ Motor current > 3.8A and TP2 between 7.0 and 7.2 bar and Oil temperature > 58.5ºC 

■ active 7.3% of the air leak

Explaining failures generated by the WAE-GAN
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● Second failure - oil leak:
○ Reservoirs > .8.8 bar and Flowmeter > 0.2 m3/h and H1 <= 9.6 bar and Oil

temperature between 65.1ºC and 71.5ºC 

■ active 37% of the oil leak
○ Oil temperature > 65.1ºC and H1 > 0 bar 

■ active 48% of the oil leak.
○ Oil temperature > 54.6ºC and TP2 > 9.2 bar 

■ active 6.5% of the oil leak.

○ Flowmeter > 25 m3/h and Oil temperature < 95.8ºC
■ active 9.1% of the oil leak.

Explaining failures generated by the WAE-GAN



Thank you for your attention.

Any Questions?

XPM - eXplainable Predictive Maintenance
CHIST-ERA-19-XAI-012
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XAI for Predictive Maintenance
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