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Real Time Failure Detection: The Context




Context

e High-speed Sensor Streaming Data

e The interesting cases are the rare events:

o Changes in the working regimes

o Anomalies and Failures

e Explaining the rare events, mainly failures!






The Air Compressor Unity Sensors
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Analogue Sensors

Table 1: Onboard sensors from APU train [19].

nr. Module Description
Analogue
1 Compressor TP2 - Compressor Pressure
2 Air Control Panel TP3 - Pneumatic panel Pressure
3 Air Control Panel HI1 - Pressure above 10.2 Bar
4 Air Dryer DV - Air Dryer Tower Pressure
5 Air Control Panel Reservoirs - Pressure
6 Compressor Qil Temperature
7 Air Control Panel Flow meter
8 Compressor Motor Current



Digital Sensors

Digital
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Electronic Control Unit
Electronic Control Unit
Electronic Control Unit
Electronic Control Unit
Electronic Control Unit
Electronic Control Unit

Compressor

Air Control Panel

COMP - Compressor on/off

DV electric - Compressor outlet valve
Towers - Active tower number

MPG - Pressure below 8.2 Bar

LPS - Pressure is lower than 7 bars
Towers Pressure

Oil Level - Level below min

Caudal impulses




Failure Detection

M. Silva, B. Veloso, J. Gama: Predictive Maintenance, Adversarial Autoencoders and Explainability;
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Autoencoders

Learn an approximation of the identity function: f(z) = z.

Two function: encoder E; : X — Z, decoder Gy : Z — &,
where X = R"™ and Z = R™.

Output of the encoder is written as: E,(z) = z.

Name 2z as latent vector and Z as latent space.

Output of the decoder is written as: Gg(z) = Z.

T 18 the reconstruction of z.



Normal Data
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Autoencoders

e AE is trained with data from the normal behaviour of trains
e Different trains have different “normal” behaviours

e There are different normal working regimes for the same train

o We use change detection algorithms to identify changes in the working regime
o Each working regime has an AutoEncoer associated

Chiara Balestra, Bin Li, and Emmanuel Muller. 11
Slidshaps-sliding shapley values for correlation-based change detection in time series.
In 2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2023.



Approach 1: LSTM Autoencoder

Stacked LSTM - Encoder
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Approach 2: Temporal Gonvolutional Networks
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Dilation = 8
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Dilation = 4

O (‘) O Hidden Layer

Dilation = 2
O Hidden Layer
Dilation = 1
@) Input

Receptive field size = dilation x (kernel - 1) + 1

1
Exponential dilation: dilation = O(2™)



Approach 3; Wasserstein Autoencoders with Generative Adversarial Networks (WAE-
GAN)

Regularization of latent space using an
adversarial training scheme.

Discriminator network D~ : trained to
distinguish samples from Ey4 from
distribution Pz

Minimax training scheme: E; is also trained
to deceive D,

WAE reconstruction
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Detecting failures

Tt
e Reconstruction error: % Z ||$z — Gy (Em(%)m%
1

o Using critic scores: compute Z-score as normalization - large absolute values of Z-score indicate high
anomaly scores. Final output: multiply reconstruction error by z-scored critic score.

e Calculate anomaly threshold from distribution of outputs from the training set. Set the threshold to:
Q3 +3*IQR

o Values above anomaly threshold given value of 1: anomaly was detected.

e Run a low pass filter on the resulting sequence of 1s and Os:
Yi = Yi—1+a*(T; —yi—1), Yo = To

o Output failure when the output of the low pass filter is consecutively above a decision threshold.
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The Neuro-Symbolic Explainer for Rare Cases
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The Anomaly Explanation Layer

The two main components:

e An online regression rules learning system, based on AMRules. Learns a
predictive model y = f(X), where y is the reconstruction error, and X are
the input features of the LSTM-AE.

e A sample strategy based on Chebyshev inequality: focusing on the
examples with high reconstruction error, meaning high probability of being

a failure.

Rules

Sampling

Algorithm

Rule
Learning
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Regression Rules

Conditions e A rule is an implication of the form

X Antecedent = Consequent
i =

— 1
f

e The Antecedent is a conjunction of conditions

based on attribute values.
If all the conditions are true, a prediction is made
based on Consequent (L).

e The Consequent contains the sufficient statistics to:
o expandarule,

o make predictions,

L o detect changes,
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! J. Duarte, J. Gama, A. Bifet: Adaptive Model Rules From High-Speed Data Streams. ACM
Trans. Knowl. Discov. Data; 2016

Consequence
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Regression Rules: the AMRules Algorithm

@ One-pass algorithm: create,
expand, and delete rules online

@ Rule expansion: select the literal
that most reduce variance of the
target

@ Uses the Hoeffdinlg bound to
decide how many observations
are required to create/expand a
rule

e Hoeffding bound
e = /R2In(1/5)/(2n)

e Expand when
O1st/02nd <1 — €

@ Evict rule when P-H signals an
alarm

Input: S: Stream of examples
begin
R« {}) D0
foreach (X,y) ¢ S do
foreach Rule r ¢ R do
| if <lsAnomaly(X,r)
then
i PHTest(errov,,
A) then
Remove the

rule from R
end

else
Update
sufficient
statistics £,
ExpandRule(r)
end
| end
end
if S(X) ~ ¢ then
Update £p
ExpandRule{ D)
if D expanded then
ReRUD
D+ 0
| end
ond
ond
retumn (R, £p)
end
Algorithm 1: Training AMRules
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Rule Sets

Rule 1

Rule 2

F>DE>D) >0

X2<0
(X1>2)

(&

Rule r

(X3 <5
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There are two types of rule sets: unordered and ordered.

The support S¥(X) of an unordered rule set given X is the set of

rules that cover X.

The support S°(X) of an ordered rule set is the first rule of SY(X).

Given X, only the rules R; € S(X) are used for training/testing. The
default rule is used if S(X) = 0.
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Chebyshev Inequality

Let Y be a random variable with finite expected value and finite non-zero variance.

Then for any real numbert >0

5 1
P(Iy—ylzrxa)iﬁ

® No more than 1/t 2 of the distribution's values can be t or more standard deviations away

from the mean
The probability of observing values far from the mean is low
The probability of observing rare cases - the failures - is low?

“E. Aminian, R. P. Ribeiro, J. Gama: Chebyshev approaches for imbalanced data
streams regression models. Data Min. Knowl. Discov. 2021


https://en.wikipedia.org/wiki/Standard_deviations

Chebyshev over-sampling

For each example:

_ ly—>¥
e Wecompute t = "5

o tis small for values of y near the mean
o tislarge for values of y far from the mean

e The example is passed to the learning algorithm K times
__ | ly=¥I
o b

e K has large values for the rare cases
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Chebyshev over-sampling

Box plot
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The Reported Failures

# Start Time End Time Failure LPS Time
1 | 2022-06-04 10:19:24.300 | 2022-06-04 14:22:39.188 | Air Leak | 2022-06-04 11:26:01.422
2 | 2022-07-11 10:10:18.948 | 2022-07-14 10:22:08.046 | Oil Leak | 2022-07-13 19:43:52.593

Table 1. Maintenance Report - Failures
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Experimental Setup

e Methods:
o LSTM Sparse Autoencoder
o TCN Autoencoder
o WAE-GAN
e Input Sequence of t time-stamps
o Compressor cycles
o Window of 30 m
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Based on 30-minute data chunks

After hyperparameter tuning:
e LSTM Autoencoder: 5 LSTM layers, 4 neurons per layer.

e TCN Autoencoder: 8 TCN layers, 7-dimensional kernel, 6 hidden units per layer, 4-dimensional
latent space (RFS = ~1500).

e WAE-GAN (4-dimensional latent-space):
o Encoder and decoder: 10 TCN layers, 3-dimensional kernel, 30 hidden units per layer (RFS
= ~2000).
o Discriminator: 3 LSTM layers with 32 neurons per layer.

29



The red horizontal dotted line is
the alarm threshold

The grey bars represent real
failures reported by
maintenance teams.

Probability of failure
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Discussion

« The WAE-GAN model is able to identify the two failures at least two
hours before the LPS signal is active.

o without generating any false alarm (achieving a perfect Fi1 score).

o« The TCN autoencoder is also able to detect both failures early
o but generates two false alarms (F1 of 0.67).
® The LSTM autoencoder is able to detect both failures
O without generating a false alarm,
O butis unable to detect the first failure before the LPS signal.
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Explaining failures generated by the WAE-GAN

e First failure - air leak:
o H1<=8.8 bar and Oil temperature > 58.5°C
m active 68% of the air leak
o Oil temperature > 60.8°C and TP2 > 9.2 bar and Reservoirs > 9.8 bar
m active 0.8% of the air leak
o Motor current > 3.8A and TP2 between 7.0 and 7.2 bar and Oil temperature > 58.5°C
m active 7.3% of the air leak
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Explaining failures generated by the WAE-GAN

e Second failure - oil leak:
o Reservoirs > .8.8 bar and Flowmeter > 0.2 m3/h and H1 <= 9.6 bar and Qil
temperature between 65.1°C and 71.5°C
m active 37% of the oil leak
o Oil temperature > 65.1°C and H1 > O bar
m active 48% of the oil leak.
o Oil temperature > 54.6°C and TP2 > 9.2 bar
m active 6.5% of the oil leak.
o Flowmeter > 25 m3/h and Oil temperature < 95.8°C
m active 9.1% of the oil leak.
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Thank you for your attention.

Any Questions?

@ XPM - eXplainable Predictive Maintenance
CHIST-ERA-19-XAI-012
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