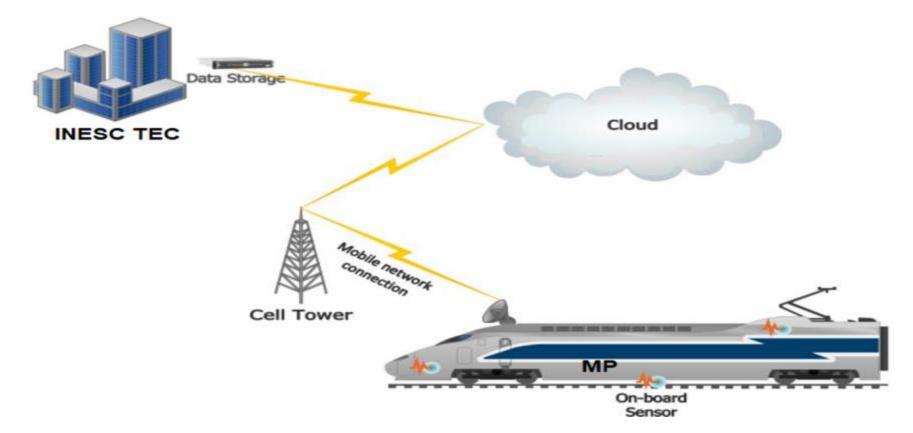
A Neuro-Symbolic Explainer for Rare Events

João Gama, Rita P. Ribeiro, Bruno Veloso

University of Porto & INESC TEC Portugal

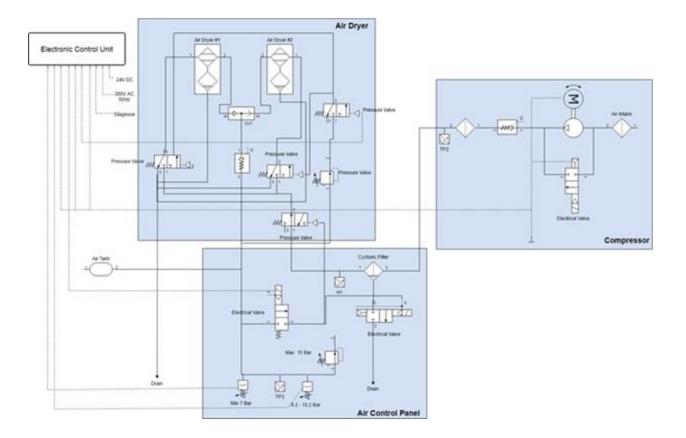
Real Time Failure Detection: The Context



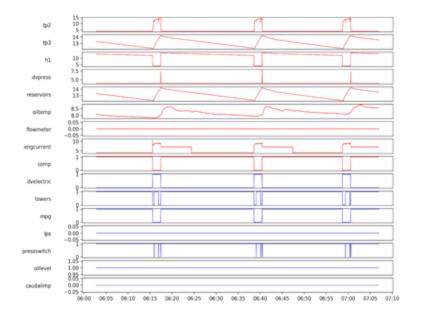
Context

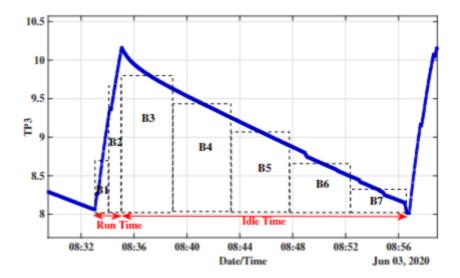
- High-speed Sensor Streaming Data
- The interesting cases are the rare events:
 - Changes in the working regimes
 - Anomalies and Failures
- Explaining the rare events, mainly failures!

The Air Compressor Unity



The Air Compressor Unity Sensors





Analogue Sensors

Table 1: Onboard sensors from APU train [19].					
nr.	Module	Description			
Analogue					
1	Compressor	TP2 - Compressor Pressure			
2	Air Control Panel	TP3 - Pneumatic panel Pressure			
3	Air Control Panel	H1 - Pressure above 10.2 Bar			
4	Air Dryer	DV - Air Dryer Tower Pressure			
5	Air Control Panel	Reservoirs - Pressure			
6	Compressor	Oil Temperature			
7	Air Control Panel	Flow meter			
8	Compressor	Motor Current			

Digital Sensors

Digital

9 Electronic Con	ntrol Unit COMP	- Compressor on/off
------------------	-----------------	---------------------

- Electronic Control Unit 10DV electric - Compressor outlet valve
- Towers Active tower number Electronic Control Unit 11
- MPG Pressure below 8.2 Bar Electronic Control Unit 12
- 13Electronic Control Unit
- 14 Electronic Control Unit
- 15
- Towers Pressure

LPS - Pressure is lower than 7 bars

- Oil Level Level below min Compressor
- 16Air Control Panel Caudal impulses

Failure Detection

M. Silva, B. Veloso, J. Gama: *Predictive Maintenance, Adversarial Autoencoders and Explainability;* ECMLPKDD 2023

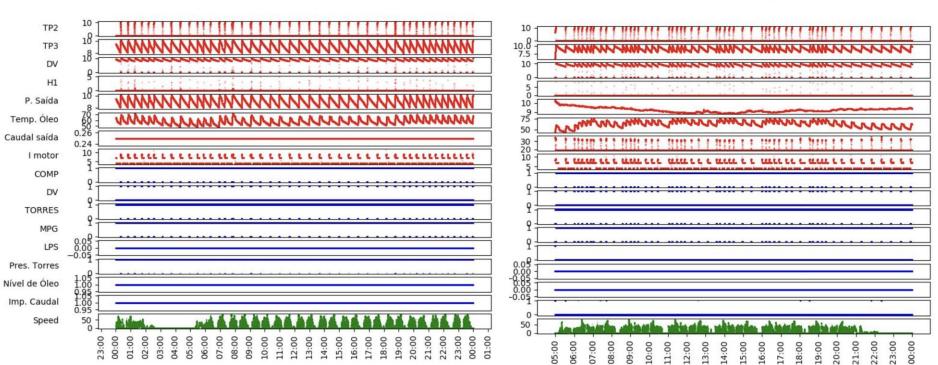
Learn an approximation of the identity function: $f(x) \approx x$.

Two function: encoder $E_{\phi} : \mathcal{X} \to \mathcal{Z}$, decoder $G_{\theta} : \mathcal{Z} \to \mathcal{X}$, where $\mathcal{X} = \mathbb{R}^n$ and $\mathcal{Z} = \mathbb{R}^m$.

Output of the encoder is written as: $E_{\phi}(x) = z$. Name z as *latent vector* and \mathcal{Z} as *latent space*.

Output of the decoder is written as: $G_{\theta}(z) = \hat{x}$. \hat{x} is the reconstruction of x.

Normal Data

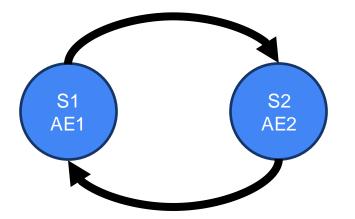


Train: 1 Date: 2020-03-23

Train: 2 Date: 2020-03-23

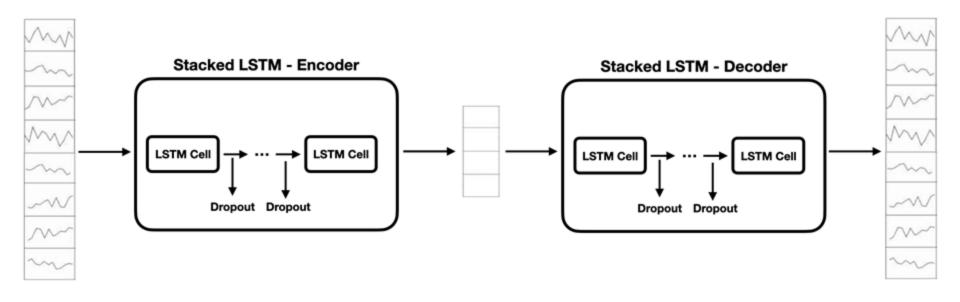
Autoencoders

- AE is trained with data from the normal behaviour of trains
- Different trains have different "normal" behaviours
- There are different normal working regimes for the same train
 - We use change detection algorithms to identify changes in the working regime
 - Each working regime has an AutoEncoer associated

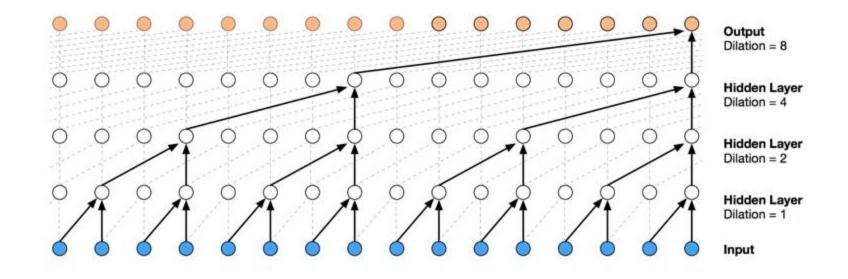


Chiara Balestra, Bin Li, and Emmanuel Muller. Slidshaps–sliding shapley values for correlation-based change detection in time series. In *2023 IEEE 10th International Conference on Data Science and Advanced Analytics (DSAA)*. IEEE, 2023.

Approach 1: LSTM Autoencoder



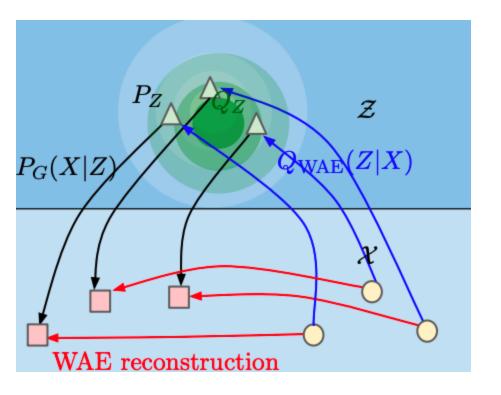
Approach 2: Temporal Convolutional Networks



Receptive field size = $dilation \times (kernel - 1) + 1$

Exponential dilation: $dilation = O(2^{\text{layer}})$

Approach 3; Wasserstein Autoencoders with Generative Adversarial Networks (WAE-GAN)

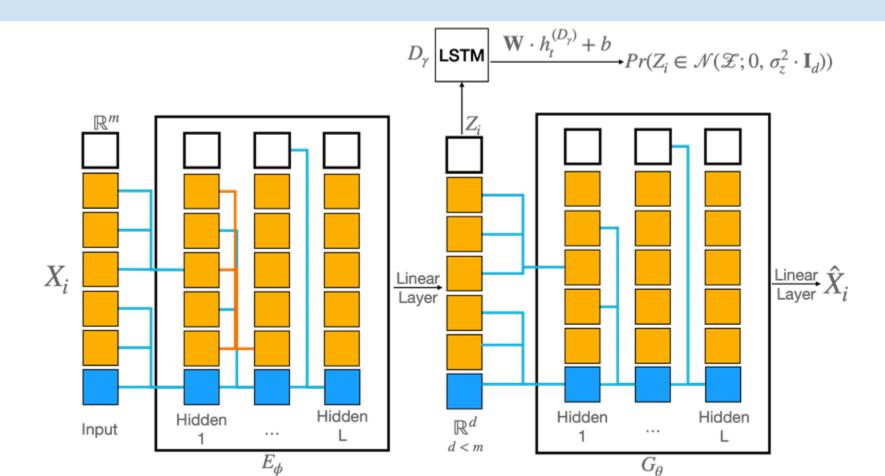


Regularization of latent space using an adversarial training scheme.

Discriminator network D_{γ} : trained to distinguish samples from E_{ϕ} from distribution P_Z

Minimax training scheme: E_{ϕ} is also trained to deceive D_{γ}

WAE-GAN with LSTM and TCN



15

Detecting failures

• Reconstruction error:

$$\frac{1}{i}\sum_{i=1}^{n}||x_{i}-G_{\theta}(E_{\phi}(x_{i}))||_{2}^{2}$$

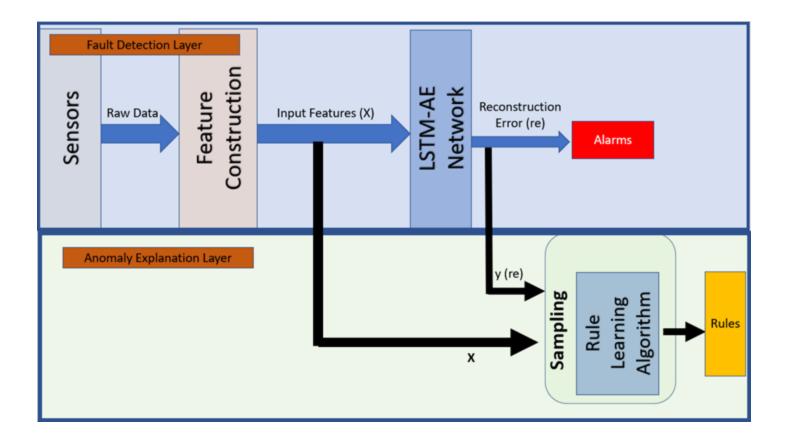
- Using critic scores: compute Z-score as normalization large absolute values of Z-score indicate high anomaly scores. Final output: multiply reconstruction error by z-scored critic score.
- Calculate anomaly threshold from distribution of outputs from the training set. Set the threshold to: Q3 +3*IQR
 - Values above anomaly threshold given value of 1: anomaly was detected.
- Run a low pass filter on the resulting sequence of 1s and 0s:

$$y_i = y_{i-1} + \alpha * (x_i - y_{i-1}), \ y_0 = x_0$$

• Output failure when the output of the low pass filter is consecutively above a decision threshold.

Explaining the Failure

The Neuro-Symbolic Explainer for Rare Cases

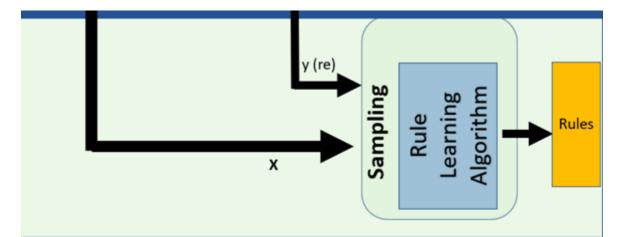


The Anomaly Explanation Layer

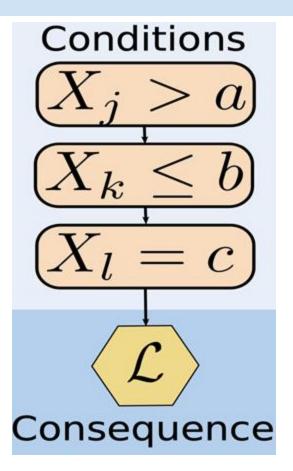
The two main components:

- An online regression rules learning system, based on AMRules. Learns a predictive model y = f(X), where y is the reconstruction error, and X are the input features of the LSTM-AE.
- A sample strategy based on *Chebyshev inequality*: focusing on the examples with high reconstruction error, meaning high probability of being

a failure.



Regression Rules

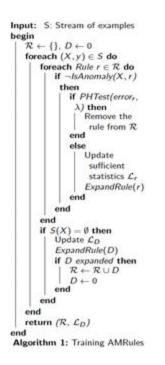


- A rule is an implication of the form
 Antecedent ⇒ Consequent
- The **Antecedent** is a conjunction of conditions based on attribute values.
- If all the conditions are true, a prediction is made based on **Consequent** (L).
- The **Consequent** contains the sufficient statistics to:
 - expand a rule,
 - make predictions,
 - o detect changes,

J. Duarte, J. Gama, A. Bifet: Adaptive Model Rules From High-Speed Data Streams. ACM Trans. Knowl. Discov. Data; 2016

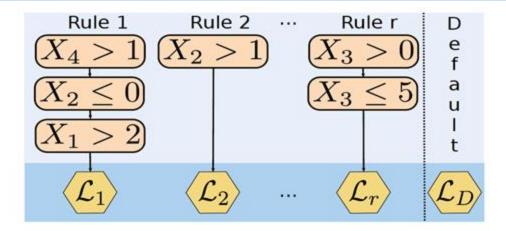
Regression Rules: the AMRules Algorithm

- One-pass algorithm: create, expand, and delete rules online
- Rule expansion: select the literal that most reduce variance of the target
- Uses the Hoeffding bound to decide how many observations are required to create/expand a rule
 - Hoeffding bound $\epsilon = \sqrt{R^2 \ln(1/\delta)/(2n)}$
 - Expand when $\sigma_{1st}/\sigma_{2nd} < 1 \epsilon$
- Evict rule when P-H signals an alarm



- -

Rule Sets



- There are two types of rule sets: unordered and ordered.
- The support S^u(X) of an unordered rule set given X is the set of rules that cover X.
- The support $S^{o}(X)$ of an ordered rule set is the first rule of $S^{u}(X)$.
- Given X, only the rules R_l ∈ S(X) are used for training/testing. The default rule is used if S(X) = Ø.

Let **Y** be a random variable with finite expected value and finite non-zero variance. Then for any real number t > 0

$$\mathsf{P}(|y-ar{y}| \geq t imes \sigma) \leq rac{1}{t^2}$$

- No more than $1/t^2$ of the distribution's values can be *t* or more standard deviations away from the mean
- The probability of observing values far from the mean is low
- The probability of observing rare cases the failures is low²

²E. Aminian, R. P. Ribeiro, J. Gama: Chebyshev approaches for imbalanced data streams regression models. Data Min. Knowl. Discov. 2021

Chebyshev over-sampling

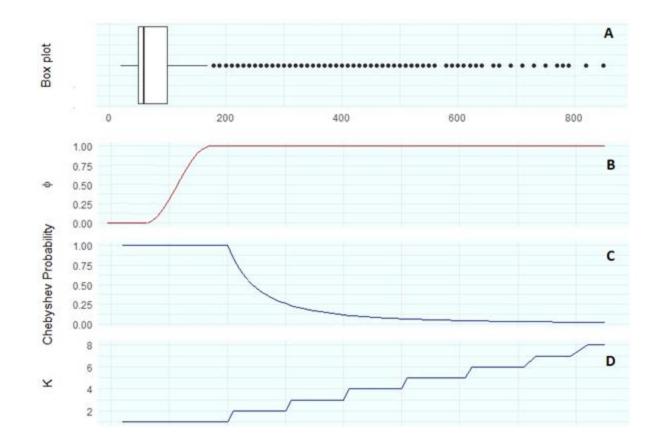
For each example:

- We compute $t = \frac{|y \overline{y}|}{\sigma}$.
 - t is small for values of y near the mean
 - t is large for values of y far from the mean
- The example is passed to the learning algorithm *K* times

$$\mathcal{K} = \left\lceil \frac{|y - \overline{y}|}{\sigma} \right\rceil$$

• K has large values for the rare cases

Chebyshev over-sampling



25

Experimental Evaluation

#	Start Time	End Time	Failure	LPS Time		
1	2022-06-04 10:19:24.300	2022-06-04 14:22:39.188	Air Leak	2022-06-04 11:26:01.422		
2	2022-07-11 10:10:18.948	2022-07-14 10:22:08.046	Oil Leak	2022-07-13 19:43:52.593		
Table 1. Maintenance Report - Failures						

Experimental Setup

• Methods:

- LSTM Sparse Autoencoder
- TCN Autoencoder
- WAE-GAN

• Input Sequence of *t* time-stamps

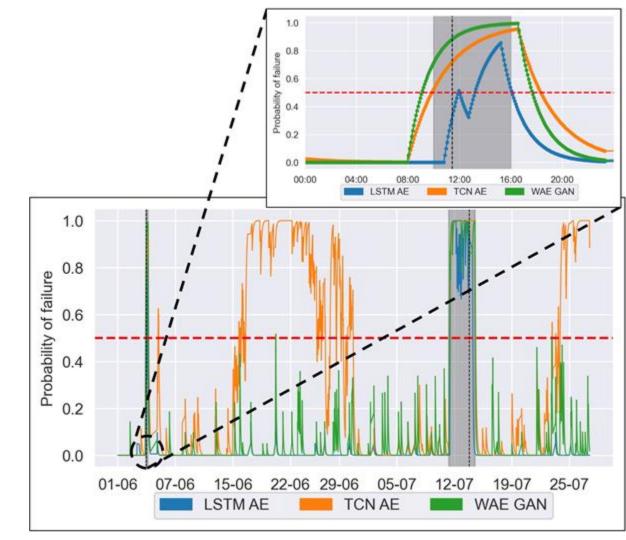
- Compressor cycles
- Window of 30 m

After hyperparameter tuning:

- LSTM Autoencoder: 5 LSTM layers, 4 neurons per layer.
- TCN Autoencoder: 8 TCN layers, 7-dimensional kernel, 6 hidden units per layer, 4-dimensional latent space (RFS = ~1500).
- WAE-GAN (4-dimensional latent-space):
 - Encoder and decoder: 10 TCN layers, 3-dimensional kernel, 30 hidden units per layer (RFS = ~2000).
 - Discriminator: 3 LSTM layers with 32 neurons per layer.

The red horizontal dotted line is the alarm threshold

The grey bars represent real failures reported by maintenance teams.



Discussion

- The WAE-GAN model is able to identify the two failures at least two hours before the LPS signal is active.
 - without generating any false alarm (achieving a perfect F1 score).
- The TCN autoencoder is also able to detect both failures early
 - but generates two false alarms (F1 of 0.67).
- The LSTM autoencoder is able to detect both failures
 - without generating a false alarm,
 - but is unable to detect the first failure before the LPS signal.

Explaining failures generated by the WAE-GAN

• First failure - air leak:

- H1 <= 8.8 bar and Oil temperature > 58.5°C
 - active 68% of the air leak
- Oil temperature > 60.8°C and TP2 > 9.2 bar and Reservoirs > 9.8 bar
 - active 0.8% of the air leak
- Motor current > 3.8A and TP2 between 7.0 and 7.2 bar and Oil temperature > 58.5°C
 - active 7.3% of the air leak

Explaining failures generated by the WAE-GAN

- Second failure oil leak:
 - Reservoirs > .8.8 bar and Flowmeter > 0.2 m3/h and H1 <= 9.6 bar and Oil temperature between 65.1°C and 71.5°C
 - active 37% of the oil leak
 - Oil temperature > 65.1°C and H1 > 0 bar
 - active 48% of the oil leak.
 - Oil temperature > 54.6°C and TP2 > 9.2 bar
 - active 6.5% of the oil leak.
 - Flowmeter > 25 m3/h and Oil temperature < 95.8°C
 - active 9.1% of the oil leak.

Thank you for your attention. Any Questions?

XPM - eXplainable Predictive Maintenance CHIST-ERA-19-XAI-012

