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Brief Introduction



Learns from static data

Uses a large amount of computing

Can  only  predict  after (extensive) 
training.

Should re-train after a concept drift 

Train data Test data

[1]

[1] https://www.onaudience.com/resources/what-is-data-stream-and-how-to-use-it/                                                                                 

Batch Learning           vs     Stream Learning (SL)

Learns from a stream of data

Incrementally online learn form 
instance/mini-batch.

Should use limited computing resources.

Able to predict at any given moment.

Should adapt to concept drifts online.
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Concept Drift

concept drift



Concept Drift (categorisation)

abrupt drift

incremental drift recurrent concept drift

gradual drift



Practical challenges



CapyMOA 
Machine learning 
for data streams
https://capymoa.org/

https://github.com/adaptive-
machine-learning/CapyMOA

v0.7.0

https://capymoa.org/
https://github.com/adaptive-machine-learning/CapyMOA
https://github.com/adaptive-machine-learning/CapyMOA


CapyMOA

A machine learning library for streaming data based on four pillars:


• Efficiency 

• Interoperability 

• Accessibility


• Flexibility 

First released on May 03, 2024


Other frameworks: MOA (java)1, river (python)2 and scikit-multiflow (python)3


[1] Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., & Seidl, T. (2010). Moa: Massive online analysis, a framework for stream classification and clustering. 
In Workshop on applications of pattern analysis (pp. 44-50). PMLR.

[3] Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scikit-multiflow: A multi-output streaming framework. Journal of Machine Learning Research, 19(72), 1-5.

[2] Montiel, J., Halford, M., Mastelini, S.M., Bolmier, G., Sourty, R., Vaysse, R., Zouitine, A., Gomes, H.M., Read, J., Abdessalem, T. and Bifet, A., 2021.  
River: machine learning for streaming data in python.  Journal of Machine Learning Research, 22(110), pp.1-8.



Why? Efficiency

Reproducibility: https://github.com/adaptive-machine-learning/CapyMOA/blob/main/notebooks/benchmarking.py



Simulating Concept Drifts

Concept drift is hard to define in a real data stream


Thus, studying it using real data can be challenging


One approach is to use synthetic data for studying and 
benchmarking algorithms



“Model a concept drift event as a weighted combination of 
two pure distribution that characterizes the target concepts 
before and after the drift.” [Bifet et al, 2011]


[Bifet et al, 2011] Bifet, A., & Kirkby, R. (2011). Data stream mining a practical approach. Chapter 2.7.1

Concept Drift Framework



Recursive definition
• Most tools (MOA[1], river[2], scikit-multiflow[3], …) uses a recursive approach to 

specify concept drift locations like:


CDS( CDS( SEA(1), SEA(2), 1000), SEA(3), 2000)


• Where we specify the drift position and the width of a drift (if it is a Gradual Drift) 
recursively.


• This can lead to some confusion depending on where the recursion is placed 

[1] Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., & Seidl, T. (2010). Moa: Massive online analysis, a framework for stream classification 
and clustering. In Workshop on applications of pattern analysis (pp. 44-50). PMLR.

[3] Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scikit-multiflow: A multi-output streaming framework. Journal of Machine Learning Research, 19(72), 1-5.

[2] Montiel, J., Halford, M., Mastelini, S.M., Bolmier, G., Sourty, R., Vaysse, R., Zouitine, A., Gomes, H.M., Read, J., Abdessalem, T. and Bifet, A., 2021.  
River: machine learning for streaming data in python.  Journal of Machine Learning Research, 22(110), pp.1-8.



Explicit list
In CapyMOA [1], the concepts and drifts are clearly outlined on a list format through a DriftStream 

Drift position + drift width:
• The start and end of a concept is determined by the presence of an AbruptDrift or GradualDrift object

DriftStream([SEA(1), AbruptDrift(position=1000), SEA(2), GradualDrift(position=2000, width=500), SEA(3)])

The GradualDrift can also be specified in terms of start and end: 
 
DriftStream([SEA(1), AbruptDrift(position=1000), SEA(2), GradualDrift(start=1750, end=2250), SEA(3)])

• This can make the drift locations more explicit and easy for new comers

[1] CapyMOA, https://capymoa.org

https://capymoa.org


Code example
DriftStream(stream=[SEA(function=1),  

                                AbruptDrift(position=5000),  

                                SEA(function=3),  

                                GradualDrift(position=10000, width=2000),  

                                SEA(function=1)])

See more on the drift stream tutorial at https://capymoa.org/notebooks/04_drift_streams.html 

Stream(moa_stream=ConceptDriftStream(),  

                               CLI=‘-s 
(ConceptDriftStream -s 
generators.SEAGenerator -d 
(generators.SEAGenerator -f  3) -p 5000 -w 
1) -d generators.SEAGenerator -w 2000 -p 
10000 -r 1’)

Both approaches will generate 
a similar output. 
The second one use 
CapyMOA generic API to 
invoke the MOA CLI

https://capymoa.org/notebooks/04_drift_streams.html


Common approach (proxy): “Attach the method to a classifier, if the accuracy goes 
up, then the detector works” 

Not necessarily the detector is successful in detecting changes, maybe it is just 
randomly resetting the classifier!


We must use specific metrics to evaluate a detector

Evaluation (detectors)

Accuracy

Time



Evaluation (detectors)
Important: we need the ground-truth of drift location for some of these


Some Metrics:  

• Recall, Precision, …


• Number of detections


• Mean Time between False Alarms (MTFA)


• Mean Time to Detection (MTD)


• And others: MDR, ARL, MTR, …

Bifet, A. (2017). Classifier concept drift detection and the illusion of progress. In Artificial Intelligence and Soft Computing ICAISC, 2017



Evaluation (detectors)
We might want to only account for detections if they are within a max_delay 

Let’s assume in the example below that yellow stars are detections, we can observe 
some delay between the drifts (red vertical lines or rectangles (gradual)) and detections.


See more on https://capymoa.org/notebooks/drift_detection.html

DelayDelay

https://capymoa.org/notebooks/drift_detection.html


Evaluation (detectors)
We might want to only account for detections if they are within a max_delay 

Let’s assume in the example below that yellow stars are detections, we can observe 
some delay between the drifts (red vertical lines or rectangles (gradual)) and detections.


See more on https://capymoa.org/notebooks/drift_detection.html

We can also specify max_delay to determine when a detection should be considered a TP

https://capymoa.org/notebooks/drift_detection.html


Using Drift Detectors

Ideally, using concept drift detectors should be straightforward 


There should be some way to update it with new values, and 
some way of detecting that a drift has been detected

Bifet, A. (2017). Classifier concept drift detection and the illusion of progress. In Artificial Intelligence and Soft Computing ICAISC, 2017



Using Drift Detectors
# Create a learner nb, create a detector, declare the stream, …

while stream_sea1drift.has_more_instances() and i < max_instances:
    instance = stream_sea1drift.next_instance()
    pred = nb.predict(instance)
    evaluator.update(instance.y_index, pred)

    is_correct = int(pred == instance.y_index)

    detector.add_element(is_correct)

    if detector.detected_change():
        print('Change detected at instance: ' + str(i))

    nb.train(instance)
# …

See notebook 05_KDD2024_solutions.ipynb at https://adaptive-machine-learning.github.io/kdd2024_ml_for_streams/ 

https://adaptive-machine-learning.github.io/kdd2024_ml_for_streams/


Recurrent Concept Drifts



Recurrent Concept Drifts

a) abrupt recurrent drift

b) incremental recurrent drift

c) gradual recurrent drift

• by concept transition 
• by time of recurrence

N Gunasekara, B Pfahringer, HM Gomes, A Bifet, Y S Koh. Recurrent Concept Drifts on Data Streams. International Joint Conferences on Artificial Intelligence (IJCAI), 2024 



Recurrent Concept Drifts

• by concept transition

a) abrupt recurrent drift

b) incremental recurrent drift

c) gradual recurrent drift
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Recurrent Concept Drifts

• by concept transition

a) abrupt recurrent drift

b) incremental recurrent drift

c) gradual recurrent drift



Recurrent Concept Drifts

• by concept transition cont..

d) partial recurrent drift

e) evolving recurrent drift



Recurrent Concept Drifts

• by concept transition cont..

d) partial recurrent drift

e) evolving recurrent drift



Recurrent Concept Drifts
• by time of recurrence

a) periodic recurrent drifts

b) semi-periodic recurrent drifts

c) random recurrent drifts



Recurrent Concept Drifts
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a) periodic recurrent drifts
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c) random recurrent drifts
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Recurrent Concept Drifts
• by time of recurrence

a) periodic recurrent drifts

b) semi-periodic recurrent drifts

c) random recurrent drifts



Drift Re-Cap

• Many types of drifts 
• abrupt, incremental, gradual and recurrent 

• Many types of recurrent concept drifts 
• by transition 
• by recurrence



Learners that cope with recurrent CD

• Ideally, these methods attempt to retain the knowledge acquired on a 
given concept and reuse it whenever that concept reappears. 

• Simple example: Maintain a pool of learners, somehow identify if a 
concept is related to a given learner from the pool. 

• Challenges:  

• identify the compatibility of two concepts 

• maintain the pool of learners



Methods
deviation between current and historic concept clusters was
used to identify concept drifts and recurring concepts. A sim-
ilar approach was proposed in SUN [Wu et al., 2012]. There
instead of k-Means, authors used k-Modes as the clustering
algorithm. A framework using the Context Spaces Model
with Context Information was proposed in ContexTrac to rep-
resent different concepts [Gomes et al., 2012]. However,
they did not elaborate on a method to extract Context Infor-
mation from a concept. A clustering-based semi-supervised
framework, ESCR [Zheng et al., 2021], uses Jensen Shannon
divergence on classification confidence score [Haque et al.,
2016] to detect recurrent concept drifts. It detects recurring
concept drift by looking for any significant change in clas-
sifier confidence scores. Then, it determines the possibility
of recurring concept drift via Jensen-Shannon divergence by
calculating the distance between two confidence score dis-
tributions. ESCR performed better than REDLLA and RCD
on some synthetic datasets. However, its performance was
poor compared to other baselines when the dataset contains
irrelevant attributes. CDMSE [Li et al., 2021] works with
missing labeled data. There, the predicted class labels by an
ensemble model were partitioned into clusters for each data
chunk to infer their class labels. Then a concept drift detec-
tion method based on the divergence of distributions between
adjoining data chunks was used to distinguish recurring con-
cept drifts. The method performed slightly better than SUN
and REDLLA on different percentages of unlabeled data.
CCP [Katakis et al., 2010] is a very early method that used
data stream clustering for SL on data streams with recurrent
concept drifts. It proposes a general framework for classify-
ing data streams by exploiting stream clustering to build and
update an ensemble of incremental classifiers dynamically.
Data stream clustering framework UClust [Namitha and San-
thosh Kumar, 2020] was proposed to handle unlabeled data
streams with recurrent concepts. Clusters detected through
CluStream [Aggarwal et al., 2003] were used to detect drifts
and identify concept recurrences. In the CDCMS framework,
clustering in the model space was used to build a diverse
ensemble and identify recurring concepts [Chiu and Minku,
2020]. The authors argue that diversity accelerates adaptation
to different types of drifts when the new concept is similar to
the past concepts.

3.4 Drift Prediction
Some methods attempt to predict the next drift or the con-
cept, considering the recurrent nature of the concept’s ap-
pearance in the stream. These methods try to either proac-
tively influence the drift detection mechanism or re-actively
correct the detection signal by the drift detector. MM-PRec
[Angel et al., 2016] trains a meta-learner that uses a Hid-
den Markov Model to predict when a drift will happen and
the most suitable concept for each situation if it is recur-
rent. To measure concept similarity, the authors used a func-
tion based on fuzzy logic. The extra computing required to
train the meta-model was identified as the method’s main
drawback. Predictive Change Confidence Function (PCCF)
for modeling recurrent changes and predicting change points
was derived using the average time between changes and its
standard deviation [Maslov et al., 2016].The PCCF mod-

Sec Method Year DD DP LM LN/A MetaL MetaF Clust CEqSim Ens CPool
3.1 LEARN++⇤ 2011 X X

PMRCD 2012 X X
Dynse 2018 X X
ASE 2017 X X
GraphPool 2018 X X X

3.2 RCD 2013 X X X X X
CPF 2016 X X X X
ECPF 2019 X X X X
PEARL 2022 X X X X

3.3 REDLLA 2012 X X X X X
SUN 2012 X X X X X
ContexTrac 2012 X X X X
ESCR 2021 X X X X X
CDMSE 2021 X X X X
CCP 2010 X X X
UClust 2020 X X X X X X X
CDCMS 2020 X X X

3.4 MM-PRec 2016 X X X X X
PCCF 2016 X
BLPA 2017 X X
CPRD 2019 X X
ProSeed 2016 X X
ProChange 2018 X X X
MDP 2018 X X X X
Nacre 2021 X X X

3.5 SELeCT 2022 X X
FiCSUM 2023 X X

Table 1: Design components of the proposed methods for recur-
rent concept drifts in each section (Sec). DD: Drift Detection, DP:
Drift Prediction, LM: Labels Missing, LN/A: Labels Not Available,
MetaL: Meta Learning, MetaF: Meta Features, Clust: Clustering
CEqSim: Conceptual Equivalence/Concept Similarity, Ens: Ensem-
ble, CPool: Concept Pool. LEARN++⇤: LEARN++.NSE

els recurrent streams as convolutions of Gaussian distribu-
tions of the time intervals between changes. The method
can be used to post-process a detection by a drift detec-
tor or dynamically adjust the sensitivity of a drift detector.
Later, BLPA [Maslov et al., 2017] used PCCF to improve
Bayesian Online Change Point Detector (BOCPD) [Adams
and MacKay, 2007] for recurrent concept drifts. BOCPD
was also used to develop Change Point Recurrence Distri-
bution (CPRD) as an empirical estimate of the recurrent
behavior of observed change points [Reich et al., 2019a;
Reich et al., 2019b]. ProSeed [Chen et al., 2016] uses a prob-
abilistic network that uses stream volatility patterns to predict
future changes. Like PCCF, this method also works indepen-
dently of the drift detection technique. ProSeed was incor-
porated into the drift detector SEED [Huang et al., 2014] to
yield a proactive drift detector. Experimental results showed
that ProSeed performed better than reactive drift detectors for
data streams with reoccurring volatility trends. The same ap-
proach was used in ProChange [Koh et al., 2018] to improve a
drift detector using Hellinger distance to detect virtual drifts
and Hoeffding inequality to detect real drifts for unlabeled
transactional data. Metadata Drift Predictor (MDP) proposes
a dynamically adapting drift detector using drift-related meta-
data clustering [Anderson et al., 2018]. MDP allows the drift
detector to be more sensitive when metadata is similar to
past drifts and more conservative when metadata is dissim-
ilar. In their empirical evaluations, MDP performed more ac-
curately compared to ProSeed. Nacre proposes a framework
that contains a recurrent drift classifier, a sequence predic-
tor, and a drift coordinator for smooth adaptation of recurrent
concept drifts [Wu et al., 2021]. The recurrent drift clas-
sifier maintains a concept repository for previously learned
concepts. The drift sequence predictor predicts the next drift
point based on the previous drift intervals. The drift coor-
dinator manipulates the recurrent drift classifier and the drift

Please refer to section 3 of the survey for more information

Explicit Handling of Recurrences 
(model for each data batch)

Meta Learning 
(act as a wrapper algorithm to determine 

the best model/s for the current concept)

Clustering

Drift Prediction

Meta Features

Design components:  

• DD: Drift Detection 

• DP: Drift Prediction 

• LM: Labels Missing 

• LN/A: Labels Not Available  

• MetaL: Meta Learning 

• MetaF: Meta Features 

• Clust: Clustering 

• CEqSim: Conceptual Equivalence/Concept Similarity 

• Ens: Ensemble 

• CPool: Concept Pool.

N Gunasekara, B Pfahringer, HM Gomes, A Bifet, Y S Koh. Recurrent Concept Drifts on Data Streams. International Joint Conferences on Artificial Intelligence (IJCAI), 2024 



Design components: DD: Drift Detection, DP: Drift Prediction, LM: Labels Missing, LN/A: Labels Not Available, MetaL: Meta Learning, MetaF: Meta Features, Clust: Clustering, CEqSim: 
Conceptual Equivalence/Concept Similarity, Ens: Ensemble, CPool: Concept Pool.

Methods
deviation between current and historic concept clusters was
used to identify concept drifts and recurring concepts. A sim-
ilar approach was proposed in SUN [Wu et al., 2012]. There
instead of k-Means, authors used k-Modes as the clustering
algorithm. A framework using the Context Spaces Model
with Context Information was proposed in ContexTrac to rep-
resent different concepts [Gomes et al., 2012]. However,
they did not elaborate on a method to extract Context Infor-
mation from a concept. A clustering-based semi-supervised
framework, ESCR [Zheng et al., 2021], uses Jensen Shannon
divergence on classification confidence score [Haque et al.,
2016] to detect recurrent concept drifts. It detects recurring
concept drift by looking for any significant change in clas-
sifier confidence scores. Then, it determines the possibility
of recurring concept drift via Jensen-Shannon divergence by
calculating the distance between two confidence score dis-
tributions. ESCR performed better than REDLLA and RCD
on some synthetic datasets. However, its performance was
poor compared to other baselines when the dataset contains
irrelevant attributes. CDMSE [Li et al., 2021] works with
missing labeled data. There, the predicted class labels by an
ensemble model were partitioned into clusters for each data
chunk to infer their class labels. Then a concept drift detec-
tion method based on the divergence of distributions between
adjoining data chunks was used to distinguish recurring con-
cept drifts. The method performed slightly better than SUN
and REDLLA on different percentages of unlabeled data.
CCP [Katakis et al., 2010] is a very early method that used
data stream clustering for SL on data streams with recurrent
concept drifts. It proposes a general framework for classify-
ing data streams by exploiting stream clustering to build and
update an ensemble of incremental classifiers dynamically.
Data stream clustering framework UClust [Namitha and San-
thosh Kumar, 2020] was proposed to handle unlabeled data
streams with recurrent concepts. Clusters detected through
CluStream [Aggarwal et al., 2003] were used to detect drifts
and identify concept recurrences. In the CDCMS framework,
clustering in the model space was used to build a diverse
ensemble and identify recurring concepts [Chiu and Minku,
2020]. The authors argue that diversity accelerates adaptation
to different types of drifts when the new concept is similar to
the past concepts.

3.4 Drift Prediction
Some methods attempt to predict the next drift or the con-
cept, considering the recurrent nature of the concept’s ap-
pearance in the stream. These methods try to either proac-
tively influence the drift detection mechanism or re-actively
correct the detection signal by the drift detector. MM-PRec
[Angel et al., 2016] trains a meta-learner that uses a Hid-
den Markov Model to predict when a drift will happen and
the most suitable concept for each situation if it is recur-
rent. To measure concept similarity, the authors used a func-
tion based on fuzzy logic. The extra computing required to
train the meta-model was identified as the method’s main
drawback. Predictive Change Confidence Function (PCCF)
for modeling recurrent changes and predicting change points
was derived using the average time between changes and its
standard deviation [Maslov et al., 2016].The PCCF mod-
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Table 1: Design components of the proposed methods for recur-
rent concept drifts in each section (Sec). DD: Drift Detection, DP:
Drift Prediction, LM: Labels Missing, LN/A: Labels Not Available,
MetaL: Meta Learning, MetaF: Meta Features, Clust: Clustering
CEqSim: Conceptual Equivalence/Concept Similarity, Ens: Ensem-
ble, CPool: Concept Pool. LEARN++⇤: LEARN++.NSE

els recurrent streams as convolutions of Gaussian distribu-
tions of the time intervals between changes. The method
can be used to post-process a detection by a drift detec-
tor or dynamically adjust the sensitivity of a drift detector.
Later, BLPA [Maslov et al., 2017] used PCCF to improve
Bayesian Online Change Point Detector (BOCPD) [Adams
and MacKay, 2007] for recurrent concept drifts. BOCPD
was also used to develop Change Point Recurrence Distri-
bution (CPRD) as an empirical estimate of the recurrent
behavior of observed change points [Reich et al., 2019a;
Reich et al., 2019b]. ProSeed [Chen et al., 2016] uses a prob-
abilistic network that uses stream volatility patterns to predict
future changes. Like PCCF, this method also works indepen-
dently of the drift detection technique. ProSeed was incor-
porated into the drift detector SEED [Huang et al., 2014] to
yield a proactive drift detector. Experimental results showed
that ProSeed performed better than reactive drift detectors for
data streams with reoccurring volatility trends. The same ap-
proach was used in ProChange [Koh et al., 2018] to improve a
drift detector using Hellinger distance to detect virtual drifts
and Hoeffding inequality to detect real drifts for unlabeled
transactional data. Metadata Drift Predictor (MDP) proposes
a dynamically adapting drift detector using drift-related meta-
data clustering [Anderson et al., 2018]. MDP allows the drift
detector to be more sensitive when metadata is similar to
past drifts and more conservative when metadata is dissim-
ilar. In their empirical evaluations, MDP performed more ac-
curately compared to ProSeed. Nacre proposes a framework
that contains a recurrent drift classifier, a sequence predic-
tor, and a drift coordinator for smooth adaptation of recurrent
concept drifts [Wu et al., 2021]. The recurrent drift clas-
sifier maintains a concept repository for previously learned
concepts. The drift sequence predictor predicts the next drift
point based on the previous drift intervals. The drift coor-
dinator manipulates the recurrent drift classifier and the drift

Please refer to section 3 of the survey for more information
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(model for each data batch)

Meta Learning 
(act as a wrapper algorithm to determine 

the best model/s for the current concept)

Clustering

Drift Prediction
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Evaluation

• Under recurrent concept drift 
• Model performance 
• Drift Detection performance



Evaluation

Relative Performance 

• compares the performance of classifier  against a baseline 
classifier . 

• at instance :     [1] 

• Cumulative Accuracy Gain:    [2]

A
B

i log(Berrori
/Aerrori

)

∑ (accuracy(A) − accuracy(B))

[1] Joao Gama, Raquel Sebastiao, and Pedro Pereira Rodrigues. On evaluating stream learning algorithms. Machine learning, pages 317–346, 2013.

[2] Ocean Wu, Yun Sing Koh, Gillian Dobbie, and T Lacombe. Probabilistic exact adaptive random forest for recurrent concepts in data streams. Int. J. Data Sci. Anal., pages 1–16, 2022.



Evaluation

Model Selection for Each Concept 
• measures the strength of the relationship between each 

pair [1]. 

• context: an underlying condition that results in a concept 
• measures the context linkage for model reuse (from a model pool)

< model, context >

[1] Ben Halstead, Yun Sing Koh, P Rid- dle, R Pears, M Pechenizkiy, and Albert Bifet. Recurring concept memory management in data streams: exploiting data stream concept 
evolution to improve performance and transparency. DM and KD, pages 796–836, 2021



Evaluation

Drift Detection on Synthetic Data (drift points known in advance) 
• True drift points are compared to the drift detected points to detect 

Type I (FP) and Type II (FN) errors. [1-4]

[1] Robert Anderson, Yun Sing Koh, and Gillian Dobbie. Predicting concept drift in data streams using metadata clustering. In IJCNN, pages 1–8. IEEE, 2018.

[2] Alexandr Maslov, Mykola Pechenizkiy, Indre Zˇliobaite, and Tommi Ka ̈rkka ̈inen. Modelling recurrent events for improving online change detection. In SDM, pages 549–557. SIAM, 2016.

[3] David Tse Jung Huang, Yun Sing Koh, Gillian Dobbie, and Russel Pears. Detecting volatility shift in data streams. In ICDM, pages 863–868. IEEE, 2014.

[4] Yun Sing Koh, David Tse Jung Huang, Chris Pearce, and Gillian Dobbie. Volatility drift prediction for transactional data streams. In ICDM, pages 1091– 1096. IEEE, 2018.



Open Source Software & Benchmark Datasets

• Most methods have custom open source implementations 
• Traditional streaming datasets  

• Real world: may not know the reoccurrence  
• Synthetic : reproducibility  

• CapyMOA recurrent concept API

Please refer to: Section 5 & 6 of the survey for more information
N Gunasekara, B Pfahringer, HM Gomes, A Bifet, Y S Koh. Recurrent Concept Drifts on Data Streams. International Joint Conferences on Artificial Intelligence (IJCAI), 2024 



Delayed & Unsupervised 
Drift Detection



• Most concept drift detection algorithms are applied to the 
univariate stream of correct/incorrect classifier 
predictions


• Such strategies require that labeled data is available as 
soon as possible to respond to concept drifts in a timely 
fashion


• Despite their intrinsic differences, most drift detectors 
trigger when the observed model’s predictive 
performance starts to degrade

Delayed & Unsupervised 
Drift Detection

Gomes, H.M., Grzenda, M., Mello, R., Read, J., Le Nguyen, M.H. and Bifet, A., 2022. A survey on semi-supervised learning for delayed partially labelled data 
streams. ACM Computing Surveys, 55(4), pp.1-42.



Terminology 

Delayed drift detection: The label will arrive at some point in 
the future, and it will be used for feeding the learner with a 
delayed univariate stream of correct/incorrect predictions


Unsupervised drift detection: The label will not arrive, thus 
the detection should be based on the input data or the output 
of the learner itself

Delayed & Unsupervised 
Drift Detection

Žliobaite, Indre. "Change with delayed labeling: When is it detectable?." In 2010 IEEE international conference on data mining workshops, pp. 843-850. IEEE, 2010.



• Experiment with data generated using the AGRAWAL generator with 3 abrupt 
concept drifts (at instances 25, 000, 50, 000, and 75, 000).  

• Used an ensemble algorithm capable of detecting and adapting to changes by 
resetting base models whenever changes are detected on their univariate 
stream of correct/incorrect predictions.  

• Figure depicts the amount of concept drifts detected (y-axis) over the 
processing of 100,000 instances with and without delayed labelling.  

• The detections for the “No delay” experiment shows a high rate of detection 
immediately after the concept drifts, except for a few arbitrary drift signals in-
between the concept drifts.

Delayed Drift Detection (Example)



Delayed Drift Detection (Example)

Gomes, H.M., Grzenda, M., Mello, R., Read, J., Le Nguyen, M.H. and Bifet, A., 2022. A survey on semi-supervised learning for delayed partially labelled data streams. ACM Computing Surveys, 55(4), pp.1-42.



STUDD: Unsupervised Concept Drift 
Detection using a Student–Teacher 

Approach

• Detecting concepts drifts in the absence of labeled data


• Procedure. A predictive model (teacher) is built using an 
initial batch of labelled training data. The teacher's 
predictions are used as class labels to train a surrogate 
model (student), which will learn to mimic the teacher. A 
drift detection algorithm is used to identify variations in the 
mimicking error of the student. 


• Hypothesis. If the mimicking error increases, then it means 
that a concept drift has occurred. 

Cerqueira, V., Gomes, H. M., Bifet, A., & Torgo, L. (2023). STUDD: A student–teacher method for unsupervised concept drift detection. Machine Learning, Springer



Conclusions



Conclusions

• Practical aspects w.r.t. CD: simulate, evaluate, utilise 

• Opportunities in identifying drifts on partially and delayed labeled 
settings 

• Opportunities w.r.t. recurrent drifts in the intersection with Online 
Continual Learning 

• Datasets  (OCL -> Recurrent SL) 
• Model pool management techniques (OCL <- Recurrent SL)



Thank you!
• Consider trying CapyMOA for your drift detection needs! 


Contact: heitor.gomes@vuw.ac.nz

Discord

https://discord.gg/RekJArWKNZ https://github.com/adaptive-
machine-learning/CapyMOA

mailto:heitor.gomes@vuw.ac.nz
https://github.com/adaptive-machine-learning/CapyMOA
https://github.com/adaptive-machine-learning/CapyMOA

